
Causal Message Sequence Charts⋆

Thomas Gazagnaire1, Blaise Genest2, Löıc Hélouët3, P.S. Thiagarajan4, Shaofa
Yang3

1 IRISA/ENS Cachan, Campus de Beaulieu, 35042 Rennes Cedex, France
2 IRISA/CNRS, Campus de Beaulieu, 35042 Rennes Cedex, France
3 IRISA/INRIA, Campus de Beaulieu, 35042 Rennes Cedex, France

4 School of computing, NUS, Singapore

Abstract. Scenario languages based on Message Sequence Charts (MSCs)
and related notations have been widely studied in the last decade [14, 13,
2, 9, 5, 12, 8]. The high expressive power of scenarios renders many basic
problems concerning these languages undecidable. The most expressive
class for which several problems are known to be decidable is one which
possesses a behavioral property called “existentially bounded”. However,
scenarios outside that class are frequently exhibited by asynchronous
distributed systems such as sliding window protocols. We propose here
an extension of MSCs called causal Message Sequence Charts that pre-
serves decidability without requiring existential bounds. Interestingly, it
can also model scenarios from sliding window protocols. We establish
the expressive power and complexity of decision procedures for various
subclasses of causal Message Sequence Charts.

1 Introduction

Scenario languages based on Message Sequence Charts (MSCs) have met con-
siderable interest in the last ten years. The attractiveness of this notation can
be explained by two major characteristics. Firstly, from the engineering point of
view, MSCs have a simple and appealing graphical representation based on just a
few concepts: processes, messages and internal actions. Secondly, from a mathe-
matical standpoint, scenario languages admit an elegant formalization: they can
be defined as languages generated by finite state automata over an alphabet of
MSCs. These automata are usually called High-level Message Sequence Charts
(HMSCs)[10].

An MSC is a restricted kind of labelled partial order and an HMSC is a
generator of a (usually infinite) set of MSCs, that is, a language of MSCs. For
example, the MSC M shown in Figure 2 is a member of the MSC language
generated by the HMSC of Figure 1 while the MSC N shown in Figure 2 is not.

HMSCs are very expressive and hence a number of basic problems associated
with them can not be solved effectively. For instance, it is undecidable whether
two HMSCs generate the same collection of MSCs [14], or whether an HMSC
generates a regular MSC language (an MSC language is regular if the collection of

⋆ Work supported by the CASDS Associated Team and the ANR projects DOTS.

M1

p q p q

M2

M1

M2
Q A

Fig. 1. An HMSC over two MSCs

all the linearizations of all the MSCs in the language is a regular string language
in the usual sense). Consequently, subclasses of HMSCs have been identified [13,
2, 5] and studied.

On the other hand, a basic limitation of HMSCs is that their MSC languages
are finitely generated. More precisely, each MSC in the language can be defined as
the sequential composition of elements chosen from a fixed finite set of MSCs [12].
However, the behaviours of many protocols constitute MSC languages that are
not finitely generated. This occurs for example with scenarios generated by the
alternating bit protocol. Such protocols can induce a collection of braids like N

in Figure 2 which can not be finitely generated.

One way to handle this is to work with so called safe (realizable) Composi-
tional HMSCs (CHMCs, for short) in which message emissions and receptions
are decoupled in individual MSCs but matched up at the time of composition, so
as to yield a (complete) MSC. CHMSCs are however notationally awkward and
do not possess the visual appeal of HMSCs. Furthermore, several positive results
on HMSCs rely on a decomposition of MSCs in atoms (the smallest non-trivial
MSCs) [9, 12, 5], which does not apply for CHMSCs, and results in a higher
complexity [6]. It is also worth noting that without the restriction to safety
(realizability), compositional HMSC languages embed the full expressive power
of communicating automata [3] and consequently inherit all their undecidable
results.

p q

Q

A

Q

A

Q

A

p q

A
Q

Q

A

Q

Q

AQ

NM

Fig. 2. Two MSCs M and N

2

This paper proposes another approach to extend HMSCs in a tractable man-
ner. The key feature is to allow the events belonging to a lifeline to be partially
ordered. More specifically, we extend the notion of an MSC to that of causal
MSC in which the events belonging to each lifeline(process), instead of being
linearly ordered, are allowed to be partially ordered. To gain modelling power,
we do not impose any serious restrictions on the nature of this partial order. Sec-
ondly, we assume a suitable Mazurkiewicz trace alphabet for each lifeline and
use this to define a composition operation for causal MSCs. This leads to the
notion of causal HMSCs which generate tractable languages of causal MSCs.

A causal HMSC is a priori not existentially bounded in the sense defined in
[6]. Informally, this property of an MSC language means that there is a uniform
upper bound K such that for every MSC in the language there exists an execution
along which—from start to finish—all FIFO channels remain K-bounded. Since
this property fails, in general, for causal MSC languages, the main method used
to solve decidability for safe CMSCs [6] is not applicable. Instead, to characterize
regularity and decidability of certain subclasses of causal HMSCs, we need to
generalize the method of [13] and of [5] in a non-trivial way.

In the next section we introduce causal MSCs and causal HMSCs. We also
define the means for associating an ordinary MSC language with a causal HMSC.
In the subsequent section we develop the basic theory of causal HMSCs. In sec-
tion 4, we identify the property called “bounded-window”, an important ingre-
dient of the “braid”-like MSC languages generated by many protocols. Basically,
this property bounds the number of messages a process p can send to a process
q without waiting for an acknowledge to be received. We then show one can
decide if a causal HMSC generates a bounded window language. In section 5 we
compare the expressive power of languages based on causal HMSCs with other
known HMSC-based language classes. Proofs are omitted due to lack of space,
but can be found in the full version of the paper available at:
http://www.irisa.fr/distribcom/Personal_Pages/gazagnaire/full.pdf .

2 MSCs, causal MSCs and causal HMSCs

Through the rest of the paper, we fix a finite nonempty set P of process names
with |P| > 1, a finite nonempty set Msg of message names and Act , a finite
nonempty set of internal action names. We define the alphabets Σ! = {p!q(m) |
p, q ∈ P , p 6= q, m ∈ Msg}, Σ? = {p?q(m) | p, q ∈ P , p 6= q, m ∈ Msg}, and
Σact = {p(a) | p ∈ P , a ∈ Act}. The letter p!q(m) means the sending of message
m from p to q; p?q(m) the reception of message m at p from q; and p(a) the
execution of internal action a by process p. Let Σ = Σ!∪Σ?∪Σact . We define the
location of a letter α in Σ, denoted loc(α), by loc(p!q(m)) = p = loc(p?q(m)) =
loc(p(a)). For each process p in P , we set Σp = {α ∈ Σ | loc(α) = p}.

Definition 1. A causal MSC over (P , Σ) is a structure
B = (E, λ, {⊑p}p∈P ,≪), where:

– E is a finite nonempty set. Members of E are called events.

3

– λ : E → Σ is a labelling function. This labelling function allows for a par-
tition of E into three subsets, E! = λ−1(Σ!),E? = λ−1(Σ?) and Eact =
λ−1(Σact).

– For each process p in P, ⊑p ⊆ Ep × Ep is a partial order on Ep, where
Ep = {e ∈ E | loc(λ(e)) = p}.

– ≪ ⊆ E! × E? is a bijection identifying message sending-reception pairs. For
each (e, e′) ∈ ≪, λ(e) = p!q(m) iff λ(e′) = q?p(m).

– The transitive closure of the relation
(

⋃

p∈P

⊑p

)

∪ ≪, denoted ≤, is a partial

order.

For convenience, we will often drop the subscript p ∈ P when it is clear from
the context. Let B = (E, λ, {⊑p}p∈P ,≪) be a causal MSC. If for all p, ⊑p is
a total order over Ep, then B is called an MSC. We define Alph(B) = {λ(e) |
e ∈ E} , and Alphp(B) = Alph(B) ∩ Σp for each p ∈ P . A linearization of
B is a word a1a2 . . . aℓ over Σ such that E = {e1, . . . , eℓ} with λ(ei) = ai for
each i; and ei ≤ ej implies i ≤ j for any i, j. We let Lin(B) denote the set of
linearizations of B. Lin(B) is not empty since ≤ is acyclic. For a set B of causal
MSCs, and for B ∈ B, we denote by |B| the number of events of B and by |B|
the size of B, which is equal to

∑

B∈B |B|.
Causal MSCs can be represented graphically: each process is represented

as a vertical line (also called lifeline), that symbolizes time evolving from top
to bottom. Along a lifeline, events are partially ordered by ⊑p. The left part
of Figure 3 depicts a causal MSC M . In M , events located on process q are
ordered and events located on process p are unordered. This is symbolized by a
box attached to instance name p, containing two unordered events. For instance,
p!q(Q).q!p(A).q?p(Q).p?q(A) and q!p(A).p?q(A).p!q(Q).q?p(Q) are linearizations
of M .

Q

A

p q

Q

A

p q p q

A

Q

M M1 M2

Fig. 3. A causal MSCs M and its two visual extensions M1, M2.

A visual extension of a causal MSC B = (E, λ, {⊑p},≪) is an MSC (E, λ, {≤p

},≪) (i.e. ≤p is a total order) such that for each p ∈ P , ⊑p ⊆ ≤p. We will denote
by Vis(B) the set of all visual extensions of the causal MSC B. For example,
Figure 3 shows the visual extensions Vis(M) = {M1, M2} of causal MSC M .

We next need to define a composition operation for causal MSCs. To this end,
for each process p in P , we fix a concurrent alphabet (Σp, Ip) ([4]), where Ip is an

4

independence relation over the alphabet of actions Σp, i.e. Ip ⊆ Σp×Σp is a sym-
metric and irreflexive relation. We denote the dependence relation (Σp×Σp)−Ip

by Dp. For convenience, we also define I =
⋃

p∈P Ip and D =
⋃

p∈P Dp. Follow-
ing the usual definitions of Mazurkiewicz traces, for each concurrent alphabet
(Σp, Ip), we define the associated trace equivalence ∼p over Σ⋆

p to be the least
equivalence relation such that, for any u, v in Σ⋆

p and α, β in Σp, α Ip β implies
uαβv ∼p uβαv. We let [u]p (or simply [u]) denote the equivalence class con-
taining u, with respect to ∼p. We can now define the composition of two causal
MSCs.

Definition 2. Let B = (E, λ, {⊑p},≪) and B′ = (E′, λ′, {⊑′
p},≪

′) be two
causal MSCs. We define the concatenation of B with B′, denoted by B⊚B′, as
the causal MSC B′′ = (E′′, λ′′, {⊑′′

p},≪
′′) where

– E′′ is the disjoint union of E and E′, λ′′ = λ ∪ λ′ and ≪′′ = ≪ ∪ ≪′.
– For each process p in P, ⊑′′

p is the transitive closure of
⊑p

⋃

⊑′
p

⋃

{(e, e′) ∈ Ep × E′
p | λ(e) Dp λ′(e′)}.

Clearly ⊚ is a well-defined and associative operation. We note that the com-
position of causal MSCs is more general than the usual composition of traces
defined as [u].[v] = [uv], since the concurrency in each causal MSC need not be
compatible with the independence relations {Ip}p∈P . For instance, we can define
a causal MSC containing two events e1 and e2 with λ(e1)Dpλ(e2) but e1 6⊑p e2

and e2 6⊑p e1. Thus for a causal MSC B we may find a word u ∈ Lin(B) such
that [u] * Lin(B). Note also that if B and B′ are MSCs and Ip = ∅ for every
p ∈ P , then B ⊚B′ is the usual weak (asynchronous) sequential composition of
B with B′ [15], denoted as B ◦ B′.

Through the rest of the paper, we fix a family of Mazurkiewicz trace alphabets
{(Σp, Ip)}p∈P . We can now define causal High-level MSCs.

Definition 3. A causal High-level MSC (“causal HMSC” for short) is a struc-
ture H = (N, Nin ,B, Nfi ,−→) where:

– N is a finite nonempty set of nodes.
– Nin ⊆ N is the set of initial nodes.
– B is a finite nonempty set of causal MSCs.
– Nfi ⊆ N is the set of final nodes.
– −→ ⊆ N × B × N is the transition relation.

Let H = (N, Nin ,B, Nfi ,−→) be a causal HMSC. A path in H is a sequence

ρ = n0
B1−→ n1

B2−→ n2 · · ·nℓ−1
Bℓ−→ nℓ. We refer to n0 as the starting node and

to nℓ as the ending node of path ρ. The path ρ is accepting iff n0 ∈ Nin and
nℓ ∈ Nfi . A cycle in H is a path starting and ending in the same node. The causal
MSC generated by ρ, denoted by ⊚(ρ), is B1⊚B2⊚ · · ·⊚Bℓ. A causal MSC B is
said to be generated by H iff B is generated by an accepting path of H . We let
CaMSC (H) denote the set of causal MSCs generated by H . Similarly, we will
denote by Vis(H) and Lin(H) the set of visual extensions and linearizations of all

5

causal MSCs in CaMSC (H). We note that Lin(H) =
⋃

{Lin(v) | v ∈ Vis(H)},
i.e. the set of linearizations generated by H is the set of linearizations generated
by its visual extensions. Finally, there is a priori, no ordering among receptions
of messages (even for messages of the same kind). Hence, messages exchanged
between two processes in the same direction can overtake each other, and no
FIFO ordering is required.

Definition 4. An MSC language L is finitely generated [12] iff there exists a
finite set of MSCs X such that any MSC B in L can be defined as the weak
sequential composition of elements of X, i.e. B = B1 ◦ B2 · · · ◦ Bt for some
B1, . . . , Bt in X.

By definition, HMSCs define finitely generated MSC languages. For a causal
HMSC H , in general, Vis(H) is not finitely generated. Consider for instance the
causal HMSC H of Figure 1, with the independence relations Ip = {((p!q(Q),
p?q(A)), (p?q(A), p!q(Q)))} and Iq = ∅. The language of visual extensions of H

contains MSCs like N of Figure 2, and thus is not finitely generated.

3 Regularity and model-checking for causal HMSCs

3.1 Semantics for causal HMSCs

As things stand, a causal HMSC H defines three syntactically different lan-
guages, namely its linearizations language Lin(H), its visual extensions (MSC)
language Vis(H) and its causal MSC language CaMSC (H). The next proposi-
tion shows that they are also semantically different in general. It also identifies
the restrictions under which they match semantically.

Proposition 1. Let I be an independence relation. Let G and H be two causal
HMSCs using I. Consider the following three hypotheses:

1. CaMSC (G) = CaMSC (H)
2. Vis(G) = Vis(H)
3. Lin(G) = Lin(H)

– Then 1 =⇒ 2 and 2 =⇒ 3, but the converses do not hold in general.
– Suppose for every causal MSC M labeling transitions of G and H, M does

not have autoconcurrency and is FIFO, then 3 =⇒ 2. We say M does
not have autoconcurrency iff, for any events e, e′ in M , λ(e) = λ(e′) implies
e ≤ e′ or e′ ≤ e. We say that M is FIFO if for any messages (e, f), (e′, f ′)
in M where e, e′ belong to process p, f, f ′ belong to process q, we have e ≤ e′

iff f ≤ f ′.
– Suppose for every causal MSC M labeling transitions of G and H, M re-

spects the independence relation, then 2 =⇒ 1. We say that M respects
the independence relation iff, for every p ∈ P, if e, e′ are events belonging
to p, λ(e)Dpλ(e′) implies that e ≤ e′ or e′ ≤ e, and e 4p e′ implies that
λ(e)Dpλ(e′), where 4p denotes the cover relation of ⊑p.

For most purposes, the relevant semantics for causal HMSCs seems to be the
set of its visual extensions.

6

3.2 Regular sets of linearizations

It is undecidable in general whether an HMSC has a regular linearization lan-
guage [13]. A subclass of HMSCs called regular [13] (or bounded [2]) HMSCs,
was identified. The linearization language of every regular HMSC is regular, and
it is decidable whether an HMSC is regular. We extend this result to causal
HMSCs. First, let us recall the notions of connectedness from Mazurkiewicz
trace theory [4], and of communication graphs [2, 13, 5]. Let p ∈ P , and B =
(E, λ, {⊑p},≪) be a causal MSC. We say that Γ ⊆ Σp is Dp-connected iff
the (undirected) graph (Γ, Dp ∩ (Γ × Γ)) is connected. Moreover, we define the
communication graph of B, denoted by CGB, to be the directed graph (Q,),
where Q = {p ∈ P | Ep 6= ∅} and ⊆ Q × Q is given by (p, q) ∈ iff
≪ ∩ (Ep ×Eq) 6= ∅. Now we say the causal MSC B is tight iff its communication
graph CGB is weakly connected and for every p ∈ P , Alphp(B) is Dp-connected.
If moreover CGB is strongly connected and the independence alphabet and B

does not have autoconcurrency (that is, events in B with the same labels are
totally ordered), then B is rigid. We will focus here on rigidity and study the
notion of tightness in section 3.3.

Let H = (N, Nin ,B, Nfi ,−→) be a causal HMSC. We say that H is regular
iff for every cycle ρ in H , the causal MSC ⊚(ρ) is rigid. For instance, the simple
protocol modeled by the causal HMSC of Figure 4, is regular, since the only
loop is labeled by two local events a, b, one message from p to q and one message
from q to p. The communication graph associated to this loop is then strongly
connected, p!q(m) − b − p?q(n) on process p is connected, and q!p(n) − a −
q?p(m) on process q is connected. Equivalently, H is regular iff for every strongly
connected subgraph G of H with {B1, . . . , Bℓ} being the set of causal MSCs
appearing in G, we have B1⊚. . .⊚Bℓ is rigid. Note that the rigidity of B1⊚. . .⊚Bℓ

does not depend on the order in which B1, . . . , Bℓ are listed. This leads to a co-
NP-complete algorithm to test whether a causal HMSC is regular.

In the same way, H is globally-cooperative iff for every strongly connected
subgraph G of H with {B1, . . . , Bℓ} being the set of causal MSCs appearing in
G, we have B1 ⊚ . . .⊚Bℓ is tight.

Theorem 1. Let H = (N, Nin ,B, Nfi ,−→) be a regular causal HMSC. Then
Lin(H) is a regular subset of Σ⋆, i.e. we can build an automaton AH over Σ that

recognizes Lin(H). Furthermore, AH has at most
(

|N |2·2|Σ|·2|N |·|Σ|·2B|
)|N |·|Σ|·2|B|

nodes.

Intuitively, for a word σ in Σ⋆, AH guesses an accepting path ρ of H and
checks whether σ is in Lin(⊚(ρ)). Upon reading a prefix σ′ of σ, AH memorizes
a sequence of subpaths from which σ′ was “linearized”. The crucial step is to
ensure that at any time, it suffices to remember a bounded number of such
subpaths, and moreover, a bounded amount of information for each subpath.

7

Ip

Iq

m a

qp p q

nb

= { (p?q(n), p!q(m)), (p!q(m), p?q(n)) }

= { (q?p(m), q!p(n)), (q!p(n), q?p(m)) }

Fig. 4. A non finitely generated tight causal HMSC

3.3 Inclusion and intersection of causal HMSCs

It is known that verification (of inclusion, intersection and equality) of HMSCs is
undecidable [13]. Clearly, if a class of scenarios has a regular set of linearizations,
as is the case for regular causal HMSCs, then these questions become decidable.
However, we do not need Lin(H) to be regular for effective verification. This is
so since for a suitable choice of K, the set of K-bounded linearizations of any
globally cooperative HMSC is regular, and this suffices for doing effective verifi-
cation [6]. Unfortunately, this result uses Kuske’s encoding [11] into traces that
is based on the existence of an (existential) bound on communication. Consider
the causal HMSC H of Figure 5. It is globally cooperative (but not regular),
and generates a set of visual extensions that contains the causal MSC language
shown on the right of Figure 5: in order to receive the first message from p to
r, the message from p to q and the message from q to r have to be sent and
received. Hence every message from p to r has to be sent before receiving the
first message from p to r, which means that H is not existentially bounded. As
a consequence, we cannot use Kuske’s encoding to show decidability of model-
checking for globally cooperative causal HMSCs.

To show decidability of model-checking for globally cooperative causal HM-
SCs, we adapt the notion of atoms [1, 9] and the proofs from [5]. Let us first
introduce a notion of decomposition into basic parts for causal MSCs.

Definition 5. A causal MSC B is a basic part (w.r.t. a dependency relation
D) if it can not be decomposed into two causal MSCs B1 and B2 such that
B = B1 ⊚B2.

Note that causal MSCs B1 and B2 in this definition can not be empty as
causal MSCs are defined over non empty sets of events. Extending the above
definition, a decomposition of a causal MSC B is a word B1.B2 · · ·Bk of basic
parts of B such that B = B1 ⊚ B2 · · · ⊚ Bk. We can extend the independence
relation Ip from letters to alphabets, writing A Ip B if for all ai in A and bi in B,

8

Ip

Iq

= { (p!q(m), p!r(o)), (p!r(o), p!q(m)) } n
m

o

o

qp r

r

o

pr

n

q
m

p

= { } = { }I r

Fig. 5. A globally-cooperative causal HMSC that is not existentially bounded

ai Ip bi. Let BBasic denote a set of basic parts. We can define the trace alphabet
(BBasic, ‖) with B1 ‖ B2 if their labels are instance-wise mutually independent,
i.e. for every p in P , Alphp(B1) Ip Alphp(B2). We denote by ∼ the associated
equivalence relation. For a language L ⊆ B⋆, we define its closure [L] = {u |
∃v ∈ L ∧ u ∼ v} by the independence relation ‖.

Proposition 2. The decomposition of any causal MSC B is unique up to com-
mutation. That is, given any decomposition B1.B2 · · ·Bk of B, any other decom-
position of B belongs to [B1 . . . Bk].

Without loss of generality, we assume through the rest of the paper that every
transition of every causal HMSC is labeled by a basic part (if not, we just decom-
pose the label into basic parts and decompose the transition into a sequence of
transitions labeled by these basic parts). Given a causal HMSC H , we denote by
BBasic(H) the labels of transitions of H . Proposition 2 implies that a causal MSC
is uniquely defined by its basic part decomposition. Then instead of the lineariza-
tion language (which can not reflect autoconcurrency), we can use the basic part
language of H , denoted by BP (H) = {B1 . . . Bk ∈ BBasic(H)⋆ | B1 ⊚ . . .⊚Bk ∈
CaMSC (H)}. Notice that BP (H) = [BP (H)] is closed by commutation since
for all A1 · · ·An ∼ B1 · · ·Bn, we have A1⊚ · · ·⊚An = B1⊚ · · ·⊚Bn. We can also
view H as an automaton over alphabet BBasic(H), and denote by LBasic(H) =

{B1 · · ·Bl ∈ BBasic(H)⋆ | n0
B1−→ n1 · · ·

Bℓ−→ nℓ is an accepting path of H} its
associated (regular) language. We now relate BP (H) and LBasic(H).

Theorem 2. Let H be a causal HMSC. Then BP (H) = [LBasic(H)].

Assuming we know how to compute the trace closure of the regular language
LBasic(H), we can obtain BP (H) with the help of Theorem 2. In general, we can-
not effectively compute this language. However if H is globally cooperative, then
[LBasic(H)] is effectively regular. Further it can be represented as an automaton
of size exponential in the size of H [4, 13]. It is not difficult to see that globally
cooperative causal HMSCs (see section 3.2) are exactly the globally cooperative
automata over basic parts. We can now obtain the following corollary.

9

Corollary 1. Let I be an independance relation. Let H and H ′ be two causal
HMSC using I. If H ′ is globally cooperative, then we can build an automaton A′

such that LBasic(A
′) = [LBasic(H

′)]. Furthermore, denoting by b the cardinality
of BBasic(H), A′ has at most 2O(b·|H′|) nodes. It implies the complexity to decide
the following questions:

– CaMSC (H) ⊆ CaMSC (H ′) is PSPACE-complete.
– CaMSC (H) ∩ CaMSC (H ′) = ∅ is EXPSPACE-complete.

This corollary shows that we can model check a causal HMSC against a
globally cooperative causal HMSC specification. We note that the independence
relations for concatenation must be the same for both causal HMSCs in order to
be able to check inclusion or intersection of basic parts languages. Suppose, in
addition, the causal MSCs labeling the transitions of H and H ′ respect I. Then
we will be able to compare the MSC semantics Vis(H) and Vis(H ′).

On the other hand, if the independence relations are different, then the only
way to compare two causal HMSCs is to compare their linearization languages.
Consequently, we would need to work with regular causal HMSCs.

3.4 Decomposition into basic parts

We still need an algorithm to check whether a causal MSC is a basic part, and
compute its decomposition in order to transform a causal HMSC into a basic
part automaton. We now show that both these questions can be answered with
the same algorithm without checking every possible partition of the event set and
hence avoiding an exponential time complexity. The following proposition shows
that decomposition construction can be reduced to the detection of strongly
connected components in a directed graph defined over events of E. This con-
struction is analogous to the technique in [9], and computes a decomposition of
a causal MSC B in quadratic time by finding strongly connected components of
a graph.

Proposition 3. Let 4p denote the cover relation of ⊑p, i.e. e 4p e′ iff e ⊑p e′

and there is no ei is such that e ⊑p ei ⊑p e′. These two problems are equivalent:

1. B = (E, λ,⊑p,≪) can be decomposed into B1 . . . Bk, where Bi = (Ei, λi,⊑i
p

,≪i) is a basic part.
2. The graph GB = (E, R) has {EBi

}i∈[1..k] as strongly connected components
and ∀i < j, (EBj

× EBi
) ∩ R = ∅. A pair of events (e, e′) ∈ E belongs to R

if and only if:
– they are locally related in B, i.e. e 4p e′ for some p in P.
– or they are reception and emission of the same message, i.e. e ≪ e′ or

e′ ≪ e.
– or they are not compatible with local independency relation, i.e. for some

p in P, we have e′ 4p e and λ(e)Ipλ(e′),
– or they are not compatible with local dependency relation, i.e. for some

p in P, we have e′ 6⊑p e, e 6⊑p e′, and λ(e)Dpλ(e′).

10

4 Bounded-window causal HMSCs

One of the chief attractions of causal MSCs is they enable the specification of
behaviors containing braids of arbitrary size such as those generated by sliding
windows protocols. Very often, sliding windows protocols appear in a situa-
tion where two processes p and q exchange bidirectional data. Messages from
p to q are of course used to transfer information, but also to acknowledge
messages from q to p. If we abstract the type of messages exchanged, these
protocols can be seen as a series of query messages from p to q and answer
messages from q to p. Implementing a sliding window means that a process
may send several queries in advance without needing to wait for an answer to
each query before sending the next query. Very often, these mechanisms tol-
erate losses, i.e. the information sent is stored locally, and can be retransmit-
ted if needed (as in the alternating bit protocol). To avoid memory leaks, the
number of messages that can be sent in advance is often bounded by some in-
teger k, that is called the size of the sliding window. Note however that for
scenario languages defined using causal HMSCs, such window sizes do not al-
ways exist. This is the case for example for the causal HMSC depicted Fig-
ure 1 with independence relations Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))}
and Iq = {((q?p(Q), q!p(A)), (q!p(A), q?p(Q))}. The language generated by this
causal HMSC contains scenarios where an arbitrary number of messages from
p to q can cross an arbitrary number of messages from q to p. A question that
naturally arises is to know if the number of messages crossings is bounded by
some constant in all the executions of a protocol specified by a causal HMSC.
In what follows, we define these crossings, and show that their boundedness is a
decidable problem.

A

A

A

Q

Q m1

p q
Q

Fig. 6. Window of message m1

11

Definition 6. Let M be a visual extension of a causal MSC, and let (e, f) be
a message of M . The window of (e, f) is the set WM (e, f) = {(e′, f ′) ∈≪|
loc(e′) = loc(f) ∧ loc(f ′) = loc(e) ∧ e ≤ f ′ ∧ e′ ≤ f}.

We say that a causal HMSC H is window bounded if and only if there exists
an integer n such that for all M ∈ Vis(H) and for all message (e, f) of M ,
|WM (e, f)| ≤ n.

Figure 6 illustrates the definition of windows, where the window of the mes-
sage m1 is symbolized by the area delimited by dotted lines. It consists of all
but the first message Q from p to q. Clearly, the causal HMSC H of Figure 1 is
not window bounded. We now describe an algorithm to check whether a causal
HMSC is window bounded. It builds an automaton that remembers the labels
of events that must appear in the future of messages (respectively in the past)
in any visual extension of CaMSC (H).

Let B = (E, λ, {⊑p}p∈P ,≪) be a causal MSC, and (e, f) one of its message.
We can define the two following sets:

FutureB(e, f) = {a ∈ Σ | ∃x ∈ E, f ≤ x ∧ λ(x) = a}
PastB(e, f) = {a ∈ Σ | ∃x ∈ E, x ≤ e ∧ λ(x) = a}

Consider an occurrence m of a message. Clearly, messages with emission in
FutureB(m) or reception in PastB(m) do not belong to the window of m. On
Figure 6, PastB(m1) = {p!q(Q), q?p(Q), q!p(A)}.

Proposition 4. Let M and N be two causal MSCs, and let m be a message of
M . Then we have:

FutureM⊚N (m) = FutureM (m) ∪ {a′ ∈ Σ | ∃x, y ∈ EN

∃a ∈ FutureM (m) s.t. λ(y) = a′ ∧ x ≤N y ∧ a D λ(x)}

The previous proposition states that FutureM1···Mn
is increasing. Further-

more, it can be computed on the fly, that is with an automaton. Similarly we
can compute PastM1···Mn

on the fly. It now follows that if the window size of a
message (e, f) is bounded, then this window size is bounded by some number
where this number depends only on the size of the graph and the size of the
alphabet.

Proposition 5. Let H = (N, Nin ,B, Nfi ,−→) be a causal HMSC, and (e, f) be
a message of H. Then if the window size of (e, f) is bounded, it is smaller than
|B||N |(|Σ|+ 1).

Moreover, to decide whether the maximal window bound for a given message
m can be reached in an efficient way by construction of an automaton that
memorizes Future(m) and Past(m).

Theorem 3. Let H = (N, Nin ,B, Nfi ,−→) be a causal HMSC. The boundedness
of H is decidable in time O(|B||N |22|Σ|).

12

5 Relationship with other scenario models

We compare here the expressive powers of different HMSC-based scenario lan-
guages with causal HMSCs. Two important strict HMSC subclasses are (i) regu-
lar [13] (also called bounded in [2]) HMSCs which ensure that the linearizations
form a regular set and (ii) globally-cooperative HMSCs [5], which ensure that the
B-bounded linearizations form a regular set for some bound B. By their very def-
inition, causal HMSCs, regular causal HMSCs and globally-cooperative causal
HMSCs extend respectively HMSCs, regular HMSCs and globally-cooperative
HMSCs.

On the other hand, Figure 5 proves that regular causal HMSCs is a strict sub-
class of globally-cooperative causal HMSCs, which is trivially a strict subclass of
causal HMSCs. Figure 4 is an example of a regular causal HMSC whose language
is not finitely generated, hence it proves that (regular/globally-cooperative)
causal HMSCs are strictly more powerful than (regular/globally-cooperative)
HMSCs.

Another extension of HMSCs consists of Compositional HMSCs [7], or CHM-
SCs for short. CHMSCs are HMSCs which allow dangling communication edges.
i.e. where the message relation ≪ is only a partial non surjective mapping con-
tained in E! × E?. The concatenation of two Compositional MSCs M1 ◦ M2
performs the instance-wise concatenation as for HMSCs, and computes a new
message pairing relation ≪ defined over (E1!

∪ E2!
) × (E1?

∪ E2?
) extending

≪1 ∪ ≪2, and preserving the FIFO ordering of messages of same content (ac-
tually, in the definition [7] considers, there is no channel content).

A CHMSC H generates a set of MSCs, denoted Vis(H) by abuse of notation,
obtained by concatenation of MSCs along a path of the graph. With this defini-
tion, some path of a CHMSC may not generate any correct MSC. Moreover, a
path of a CHMSC generates at most one MSC. The class of CHMSC for which
each path generates exactly one MSC is called safe CHMSC, still a strict exten-
sion over HMSCs. Regular and globally cooperative HMSCs have also their strict
extensions in terms of safe CHMSCs, namely as regular CHMSC and globally
cooperative CHMSCs.

It is not hard to build a regular Compositional HMSC H with Vis(H) =
{Mi | i = 0, 1, . . .} where each Mi consists of an emission event e from p to r,
then a sequence of i blocks of three messages: a message from p to q followed
by a message from q to r then a message from r to p. And at last the reception
event on r from p matching e. That is, H is not finitely generated. A causal
HMSC cannot generate the same language. Assume for contradiction, a causal
HMSC G with Vis(G) = Vis(H). Let k be the number of messages of the biggest
causal MSC which labels a transition of G. We know that Mk is in Vis(G), hence
N1, . . . , Nm labels a path of G with Mk+1 ∈ N1⊚ · · ·⊚Nm and m ≥ 2 because of
the size k. It also means that N1 ◦ · · · ◦Nm ∈ Vis(G), that is, there exists j with
Mj = N1 ◦ · · · ◦ Nm, a contradiction since the left part of the equality is a basic
part and the right part is not. That is (regular) compositional HMSCs are not
included into causal HMSCs. On the other hand, regular causal HMSCs have
a regular set of linearizations (Theorem 1) and it has been shown that regular

13

r HMSC r CaHMSC r CHMSC

gc HMSC

gc CaHMSC

gc CHMSC

HMSC

CaHMSC

s CHMSC

CHMSC

Causal Compositional

regular

 globally
cooperative

 finitely
generated

Fig. 7. Comparison of Scenario languages and CFMs

compositional HMSC captures all the MSC languages that have a regular set
of linearizations, hence regular causal HMSC are included into regular compo-
sitional HMSC. Last, we already know with Figure 5 that globally-cooperative
causal HMSCs are not necessarily existentially bounded, hence they are not in-
cluded into safe Compositional HMSC. Furthermore, globally-cooperative causal
HMSCs are not included into CHMSC because of possible autoconcurrency.

The relationships between these scenario models are summarized by Figure 7,
where arrows denote strict inclusion of languages. Two classes are uncomparable
when they are not connected by a transitive sequence of arrows. We use the
abbreviation r for regular, gc for globally-cooperative, s for safe, CaHMSC for
causal HMSCs and CHMSC for compositional HMSCs.

6 Conclusion

We have defined an extension of HMSCs called causal HMSCs that allows the
definition of braids, such as those appearing in sliding windows protocols. We
also identified in this setting, many subclasses of scenarios that were defined for
HMSCs which have decidable verification problems. An interesting class that
emerges is globally-cooperative causal HMSCs. This class is incomparable with
safe Compositional HMSCs because the former can generate non existentially
bounded behaviors. Yet, for this class the generic model-checking problems are
decidable.

An interesting open problem is deciding whether the set of visual extensions
of a causal HMSC is finitely generated. Yet another interesting issue is to con-
sider the class of causal HMSCs that have bounded crossing windows for all
their messages. The set of behaviors generated by these causal HMSCs seems to
exhibit a kind of regularity that could be exploited. Finally, designing suitable

14

machine models (along the lines of Communicating Finite Automata [3]) is also
an important future line of research.

References

1. M. Ahuja, A.D. Kshemkalyani, and T. Carlson. A basic unit of computation in
distributed sytems. In Proc. of ICDS’90, pages 12–19, 1990.

2. R. Alur and M. Yannakakis. Model checking of message sequence charts. In Proc.
of CONCUR’99, number 1664 in LNCS, pages 114–129. Springer, 1999.

3. D. Brand and P. Zafiropoulo. On communicating finite state machines. Technical
Report RZ1053, IBM Zurich Research Lab, 1981.

4. V. Diekert and G. Rozenberg, editors. The book of traces. World Scientific, 1995.
5. B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state high-level MSCs:

Model-checking and realizability. Journal of Computer and System Sciences,
72(4):617–647, 2006.

6. Blaise Genest, Dietrich Kuske, and Anca Muscholl. A kleene theorem and model
checking for a class of communicating automata. Information and Computation.,
204(6):920–956, 2006.

7. E. Gunter, A. Muscholl, and D. Peled. Compositional message sequence charts. In
Proc. of TACAS’01, number 2031 in LNCS. Springer, 2001.

8. J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P.S. Thiagarajan.
A theory of regular MSC languages. Information and Computation, 202(1):1–38,
2005.

9. L. Hélouët and P. Le Maigat. Decomposition of message sequence charts. In Proc.
of SAM’00, 2000.

10. ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC). ITU-
TS, 1999.

11. D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187(1):80–109, 2003.

12. R. Morin. Recognizable sets of message sequence charts. In Proc. of STACS’02,
number 2285 in LNCS, pages 523–534. Springer, 2002.

13. A. Muscholl and D. Peled. Message sequence graphs and decision problems on
Mazurkiewicz traces. In Proc. of MFCS’99, number 1672 in LNCS. Springer, 1999.

14. A. Muscholl, D. Peled, and Z. Su. Deciding properties for message sequence charts.
In Proc. of FoSSaCS’98, number 1378 in LNCS, pages 226–242. Springer, 1998.

15. M. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis, Eind-
hoven University of Technology, 1999.

15

