
Causal Message Sequence Charts

Thomas Gazagnaire 1

Citrix Systems R&D Ltd., UK

Blaise Genest
IRISA/CNRS, France

Löıc Hélouët
IRISA/INRIA, France

P.S. Thiagarajan
School of Computing, National University of Singapore

Shaofa Yang 1

UNU-IIST, Macao.

Abstract

Scenario languages based on Message Sequence Charts (MSCs) have been wide-
ly studied in the last decade. The high expressive power of MSCs renders many
basic problems concerning these languages undecidable. However, several of these
problems are decidable for languages that possess a behavioral property called “ex-
istentially bounded”. Unfortunately, collections of scenarios outside this class are
frequently exhibited by systems such as sliding window protocols. We propose here
an extension of MSCs called causal Message Sequence Charts and a natural mecha-
nism for defining languages of causal MSCs called causal HMSCs (CaHMSCs). These
languages preserve decidable properties without requiring existential bounds. Fur-
ther, they can model collections of scenarios generated by sliding window protocols.
We establish here the basic theory of CaHMSCs as well as the expressive power
and complexity of decision procedures for various subclasses of CaHMSCs. We also
illustrate the modeling power of our formalism with the help of a realistic example
based on the TCP sliding window feature.

1 Introduction

Formal modeling and analysis of the behavior of communicating systems helps
discover design mistakes at early stages of conception. This domain is well
studied; for a typical study, the reader is referred to [18]. Formal models
of behaviors are becoming more frequent, at least in terms of documenting

Email addresses: thomas.gazagnaire@citrix.com (Thomas Gazagnaire),
blaise.genest@irisa.fr (Blaise Genest), lhelouet@irisa.fr (Löıc Hélouët), thi-
agu@comp.nus.edu.sg (P.S. Thiagarajan), ysf@iist.unu.edu (Shaofa Yang).
1 Work done while this author was at IRISA/INRIA, France.

Preprint submitted to Elsevier Preprint 27 April 2009

parts of a system using standard notations such as UML. However, UML-like
notations are not always equipped with a clear semantics and when this is
the case, the proposed formalism often lacks the expressive power needed to
model all the relevant behaviors of the designed system. A frequent problem
with communication protocols, for instance, is that the state space of the
designed system can be infinite. One then must choose between an abstraction
to maintain the description as a finite state representation or to explicitly
model the status the communication channels using communicating finite state
machines or Petri nets but in doing so loose decidability of most of logical
properties (see [5,10] for instance). Formal modeling of distributed systems is
then a tradeoff between expressiveness of a model and the ability to perform
behavioral analysis effectively. The main technical theme of the present paper
can be viewed as exploiting one such trade-off in the setting of scenario-based
specifications.

Turning now to scenarios, models of infinite state communicating systems
such as π-Calculus or communicating finite state machines focus on a process-
based descriptions of behaviors. The specific patterns of interactions between
the processes that can arise are implicit and need to be extracted by system-
atically applying the operational semantics of the model to a specific system
description. Scenarios offer a different modeling paradigm, by focusing on com-
positions of simple diagrams describing a single finite stretch of interactions of
several agents via the exchange of messages. The challenge in studying them
does not reside in the the individual scenarios diagrams, which are often simple
easy-to-understand use cases of the system. Rather, it lies in the fact that a
rich class of scenarios can result through the composition of the basic scenarios
as permitted by the protocol/system that is being modeled. Since the basic
scenarios can be formally viewed as partial orders, studying scenarios-based
specifications of communicating systems amounts to analyzing the composi-
tion of partial orders; an idea proposed decades ago by [22,9,26].

Scenarios are often based on formal objects called Message Sequence Charts
(MSCs) and consequently MSCs have attracted considerable interest in the
last decade [25,24,3,17,14,23,16]. The attractiveness of this notation derives
from two major characteristics. Firstly, MSCs have a simple and appealing
graphical representation based on just a few concepts: processes (lifelines),
messages and internal actions. The graphical notation for MSCs represents the
time evolution of processes by vertical lines, atomic actions by squares con-
taining action names and located on a process line, and message exchanges
by arrows from the sending process to the receiving one. See for instance
the two MSCs shown in Figure 1. Secondly, from a mathematical standpoint,
scenario languages can be generated by finite-state automata over an alpha-
bet of MSCs. These automata are called High-level Message Sequence Charts
(HMSCs) [19]. HMSCs can in turn be specified using a graphical notation: they
are graphs where each node are either a start symbol (a downward pointing

2

triangle), an end symbol (an upward pointing triangle), a connection point (a
circle), or a reference to another MSC or HMSC (A reference name enclosed
in a rectangle) [30]. Behaviors defined by HMSCs are simply concatenations of
MSC references along paths from a start to an end symbol (concatenation will
be defined formally in section 2). For example, the MSC M shown in Figure 2
is a member of the MSC language generated by the HMSC of Figure 1 while
the MSC N shown in Figure 2 is not.

Fig. 1. An HMSC over two MSCs

HMSCs are very expressive and hence a number of basic problems associated
with them cannot be solved effectively. For instance, it is undecidable whether
two HMSCs generate the same collection of MSCs [25] or whether an HMSC
generates a regular MSC language; an MSC language is regular if the collection
of all the linearizations of all the MSCs in the language is a regular string
language in the usual sense. Consequently, subclasses of HMSCs have been
identified [24,3,14] and studied.

On the other hand, a basic limitation of HMSCs is that their MSC languages
are finitely generated. More precisely, each MSC in the language can be defined
as the sequential composition of elements chosen from a fixed finite set of
MSCs [23]. However, the behaviors of many protocols constitute MSC lan-
guages that are not finitely generated. This occurs for example with scenarios
generated by the alternating bit protocol. Such protocols can induce a collec-
tion of braids like N in Figure 2 which cannot be finitely generated.

One way to handle this is to work with the so called compositional HMSCs [15]
in which message emissions and receptions are decoupled in individual MSCs
but matched up at the time of composition, so as to yield an MSC. Com-
positional HMSCs are however notationally awkward and do not possess the
visual appeal of HMSCs. Further, the general class of compositional HMSC
languages embeds the full expressive power of communicating automata [5]
and consequently inherits all their undecidability results.

This paper proposes a new approach to increase the modeling power of HMSCs
in a tractable manner. We first extend the notion of an MSC to a causal
MSC in which the events belonging to each lifeline (process), instead of being
linearly ordered, are allowed to be partially ordered. In order to define a com-
position operation for causal MSCs, we assume a suitable Mazurkiewicz trace
alphabet [9] for each lifeline. This leads to the notion of causal HMSCs.

3

Fig. 2. Two MSCs M and N

Our goal is to develop the basic theory of causal HMSCs. One could hope to
exploit the property called existential boundedness [13] for this purpose since
it leads to a powerful proof technique for establishing decidability results for
HMSCs. Informally, this property states that there is a uniform upper bound
K such that for every MSC in the language there exists an execution along
which -from start to finish- all channels remain K-bounded. Unfortunately,
a causal HMSC (i.e. the MSC language associated with a causal HMSC) is
a priori not existentially bounded. Hence the proof method cited above can-
not be used to obtain the desired decidability results. Instead, we need to
generalize the methods of [24] and of [14] in a non-trivial way.

Our first major result is to formulate natural -and decidable- structural con-
ditions and to show that causal HMSCs satisfying these conditions generate
MSC languages that are regular. Our second major result is that the inclusion
problem for causal HMSCs (i.e. given two causal HMSCs, whether the MSC
language defined by the first one is included in the MSC language of the other)
is decidable for causal HMSCs using the same Mazurkiewicz trace alphabets,
provided at least one of them has the structural property known as globally-
cooperative. Furthermore, we prove that the restriction that the two causal
HMSCs have identical Mazurkiewicz trace alphabets associated with them is
necessary. These results constitute a non-trivial extension for causal HMSCs
of comparable results on HMSCs [24,3,16] and [14]. In addition, we identify
the property called “window-bounded” which appears to be an important
ingredient of the “braid”-like MSC languages generated by many protocols.
Basically, this property bounds the number of messages a process p can send to
a process q before having received an acknowledgment to the earliest message.
We show it is decidable if a causal HMSC generates a window-bounded MSC
language. Finally, we compare the expressive power of languages based on
causal HMSCs with other known HMSC-based language and give a detailed
example based on the TCP protocol to illustrate the modeling potential of
causal HMSCs.

4

This paper is an extended version of the work presented in [12], and contains
several important changes, improvements and new examples. Specifically, the
definition of s-regularity and of global-cooperativity has been weakened for
causal HMSCs. As a result, causal HMSCs which were not s-regular according
to [12] are deemed to be s-regular under the weakened definition.

In the next section we introduce causal MSCs and causal HMSCs. We also de-
fine the means for associating an ordinary MSC language with a causal HMSC.
In the subsequent section we develop the basic theory of causal HMSCs.
To this end, we identify the subclasses of s-regular (syntactically regular)
and globally-cooperative causal HMSCs and develop our decidability results.
In section 4, we identify the “window-bounded” property, and show that
one can decide if a causal HMSC generates a window-bounded MSC lan-
guage. In section 5 we compare the expressive power of languages based on
causal HMSCs with other known HMSC-based language classes. Finally, in
section 6, we give a detailed example based on the TCP protocol to illustrate
the modeling potential of causal HMSCs. Due to lack of space, some proofs are
omitted or only sketched, but can be found in an extended version, available at
www.irisa.fr/distribcom/Personal Pages/helouet/

Papers/GGHTY-CMSC-Long.pdf.

2 MSCs, causal MSCs and causal HMSCs

Through the rest of the paper, we fix a finite set P of process names with
|P| > 1. For convenience, we let p, q range over P and we will not mention
that p ∈ P when there is no confusion. We also fix finite nonempty sets Msg ,
Act of message types and internal action names respectively. We define the
alphabets Σ! = {p!q(m) | p, q ∈ P, p 6= q,m ∈ Msg}, Σ? = {p?q(m) | p, q ∈
P , p 6= q,m ∈ Msg}, and Σact = {p(a) | p ∈ P, a ∈ Act}. The letter p!q(m)
means the sending of a message with content m from p to q; p?q(m) the
reception of a message of content m at p from q; and p(a) the execution of an
internal action a by process p. Let Σ = Σ!∪Σ?∪Σact . We define the location of
a letter α in Σ, denoted loc(α), by loc(p!q(m)) = p = loc(p?q(m)) = loc(p(a)).
For each process p in P , we set Σp = {α ∈ Σ | loc(α) = p}.

Definition 1 A causal MSC over (P , Σ) is a structure B = (E, λ, {⊑p},≪),
where E is a finite nonempty set of events, λ : E → Σ is a labelling function,
and the following conditions hold:

• For each process p, ⊑p ⊆ Ep × Ep is a partial order, where Ep = {e ∈ E |
λ(e) ∈ Σp}.

• ≪ ⊆ E! × E? is a bijection, where E! = {e ∈ E | λ(e) ∈ Σ!} and E? = {e ∈
E | λ(e) ∈ Σ?}. For each e ≪ e′, λ(e) = p!q(m) iff λ(e′) = q?p(m).

• The transitive closure ≤ of the relation
(⋃

p∈P
⊑p

)
∪ ≪ is a partial order.

5

For each p, the relation ⊑p dictates the “causal” order in which events of Ep

may be executed. We let ⊑̂p ⊆ Ep ×Ep denote the least relation such that ⊑p

is the reflexive and transitive closure of ⊑̂p (⊑̂p is the Hasse diagram of ⊑p).
The relation ≪ identifies pairs of message-emission and message-reception
events. The size of a causal MSC B is denoted by |B| and is simply the
cardinal of its set of events |E|. We say that the causal MSC B is weak-
FIFO iff for any e ≪ f , e′ ≪ f ′ such that λ(e) = λ(e′) = p!q(m) (and thus
λ(f) = λ(f ′) = q?p(m)), we have either e ⊑p e′ and f ⊑q f ′; or e′ ⊑p e and
f ′ ⊑q f . In weak-FIFO 2 scenarios, messages of the same content between two
given processes cannot overtake. Note however that messages of different kind
between two processes can overtake. Note that we do not demand a priori
that a causal MSC must be weak-FIFO. Testing (weak) fifoness of a causal
MSC of size b can be done in at most O(b2

8
− b

4
), by checking in the worst case

for all pairs of messages e ≪ f and e′ ≪ f ′ in the MSC that e ⊑p e′ for some
p implies f ⊑q f ′ for some q. We will say that two causal MSCs are equal,
and write B1 = B2 when they are defined over the same sets of processes and
are isomorphic, that is there exists a bijection from E1 to E2 that preserves
labeling, {⊑p} and ≪.

A linearization of B is a word a1a2 . . . aℓ over Σ such that E = {e1, . . . , eℓ}
with λ(ei) = ai for each i; and ei ≤ ej implies i ≤ j for any i, j. We let Lin(B)
denote the set of linearizations of B. Clearly, Lin(B) is nonempty. We set
Alph(B) = {λ(e) | e ∈ E}, and Alphp(B) = Alph(B) ∩ Σp for each p.

The leftmost part of Figure 3 depicts a causal MSC M . The graphical repre-
sentation of causal MSCs is a light adaptation of the graphical notation for
MSCs. In this diagram, we enclose events of each process p in a vertical box
and show the partial order ⊑p in the standard way. In case ⊑p is a total order,
we place events of p along a vertical line with the minimum events at the
top and omit the box. In particular, in M , the two events on p are not or-
dered (i.e. ⊑̂p is empty) and ⊑q is a total order. Members of ≪ are indicated by
horizontal or downward-sloping arrows labelled with the transmitted message.
Both words p!q(Q).q!p(A).q?p(Q).p?q(A) and q!p(A).p?q(A).p!q(Q).q?p(Q) are
linearizations of M .

An MSC B = (E, λ, {⊑p},≪) is defined in the same way as a causal MSC
except that every ⊑p is required to be a total order. In an MSC B, the rela-
tion ⊑p must be interpreted as the visually observed order of events in one
sequential execution of p. Let B′ = (E ′, λ′, {⊑′

p},≪
′) be a causal MSC. Then

we say the MSC B is a visual extension of B′ if E ′ = E, λ′ = λ, ⊑′
p ⊆ ⊑p

and ≪′ = ≪. We let Vis(B′) denote the set of visual extensions of B′. Note

2 A different notion called strong FIFO that does not allow overtakings of messages
between two given processes of different content is also frequently used in the MSC
literature.

6

that linearizations alone are not sufficient in general to characterize a single
visual extension or causal MSCs. Consider for instance the set of linearizations
{p!q(m).p!q(m).p!q(m).q?p(m).q?p(m).q?p(m)}. This language corresponds to
a MSC that contains three messages m from process p to process q, and such
that the reception of the last message must occur before the two other recep-
tions, but in which the first and second message may overtake or not.

Fig. 3. Two causal MSC M, M ′ and the visual extensions M1, M2 of M .

In Figure 3, Vis(M) consists of MSCs M1,M2. The initial idea of visual or-
dering comes from [2], that notices that depending on the interpretation of
an MSC, for example when a lifeline describes a physical entity in a network,
imposing an ordering on message receptions is not possible. Hence, [2] distin-
guishes two orderings on MSCs: a visual order (that is the usual order used
for MSCs), that comes from the relative order of events along an instance line,
and a causal order, that is weaker, and does not impose any ordering among
consecutive receptions.

Note that for a given causal MSC B, we can not always compute an MSC in
V is(B) by replacing {⊑p}p∈P by {<p}p∈P , where <p is a linear extension of
⊑p. Indeed, we can not chose separately any linear extension for each process

p ∈ P, as the transitive closure of
(⋃

p∈P
<p

)
∪ ≪ must remain a partial order.

Consider for instance the causal MSC M ′ in Figure 3: one can not chose as
linear extension q!p(A) <q q?p(Q), as the transitive closure of (<p ∪ <q ∪ ≪)
would not be a partial order. Hence, the only visual extension of M ′ is the
MSC M1.

We next define a concatenation operation for causal MSCs. Unlike for usual
MSCs, events of a same process need not be dependent. To express whether
there should be a dependency or not, for each process p in P , we fix a con-
current alphabet (Mazurkiewicz trace alphabet [9]) (Σp, Ip) for each process
p ∈ P, where Ip ⊆ Σp × Σp is a symmetric and irreflexive relation called the
independence relation over the alphabet of actions Σp. We denote the depen-
dence relation (Σp × Σp) − Ip by Dp. These relations are fixed for the rest of
the paper (unless explicitly stated otherwise). Following the usual definitions
of Mazurkiewicz traces, for each (Σp, Ip), the associated trace equivalence re-
lation ∼p over Σ⋆

p is the least equivalence relation such that, for any u, v in Σ⋆
p

and α, β in Σp, α Ip β implies uαβv ∼p uβαv. Equivalence classes of ∼p are
called traces. For u in Σ⋆

p, we let [u]p denote the trace containing u.

7

Let B = (E, λ, {⊑p},≪) be a causal MSC. We say ⊑p respects the trace
alphabet (Σp, Ip) iff for any e, e′ ∈ Ep, the following hold:

(i) λ(e) Dp λ(e′) implies e ⊑p e′ or e′ ⊑p e
(ii) e ⊑̂p e′ implies λ(e) Dp λ(e′)

A causal MSC B is said to respect the trace alphabets {(Σp, Ip)}p∈P iff ⊑p

respects (Σp, Ip) for every p. In order to gain modelling power, we have allowed
each ⊑p to be any partial order, not necessarily respecting (Σp, Ip). We can now
define the concatenation operation of causal MSCs using the trace alphabets
{(Σp, Ip)}p∈P .

Definition 2 Let B = (E, λ, {⊑p},≪) and B′ = (E ′, λ′, {⊑′
p},≪

′) be causal
MSCs. We define the concatenation of B with B′, denoted by B ⊚ B′, as the
causal MSC B′′ = (E ′′, λ′′, {⊑′′

p},≪
′′) where:

• E ′′ is the disjoint union of E and E ′. λ′′ is given by: λ′′(e) = λ(e) if e ∈ E,
λ′′(e) = λ′(e) if e ∈ E ′ and ≪′′ = ≪ ∪ ≪′.

• For each p, ⊑′′
p is the transitive closure of

⊑p

⋃
⊑′

p

⋃
{(e, e′) ∈ Ep × E ′

p | λ(e) Dp λ′(e′)}

Clearly, ⊚ is a well-defined and associative operation. Note that in case B
and B′ are MSCs and Dp = Σp × Σp for every p, then the result of B ⊚ B′ is
the asynchronous concatenation (also called weak sequential composition) of
B with B′ [27], which we denote by B ◦ B′. Note that when B1 and B2 are
weak-FIFO causal MSCs, then their concatenation is also weak-FIFO. This
property comes from the irreflexive nature of the independence relations. This
remark also holds for the concatenation of MSCs. We also remark that the
concatenation of causal MSCs is different from the concatenation of traces.
The concatenation of trace [u]p with [v]p is the trace [uv]p. However, a causal
MSC B needs not respect {(Σp, Ip)}p∈P . Consequently, for a process p, the
projection of Lin(B) on Alphp(B) is not necessarily a trace.

Figure 4 shows an example of sequential composition of two causal MSCs B1

and B2, with the dependency relations Dp and Dq being the symmetric and

reflexive closure of
{(

p!q(m), p!q(n)
)
,
(
p!q(n), p?q(u)

)}
and

{(
q?p(n), q!p(v)

)}

respectively. The resulting causal MSC B1 ⊚B2 is obtained by copying the or-
der contained ib B2 below B1, and then adding dependencies between events
located on the same processes according to the dependency alphabet. For
instance, on process p, the emission of message n and the reception of mes-
sage u are ordered in B1 ⊚ B2, because (p!q(n), p?q(u)) ∈ Dp. Conversely, as
(p!q(m), p?q(u)) 6∈ Dp, the sending of message m and the reception of message
u are onordered in B1 ⊚ B2. Note that although the dependence relation Dp

contains the pair
(
p!q(m), p!q(n)

)
, sendings of messages m and n by process

p in B1 can be unordered, and remain unordered after composition.

8

Fig. 4. Concatenation example.

An usual way to extend the composition mechanism is to use an automaton
labelled by basic scenarios, to produce scenario languages. These automata
are called High-level Message Sequence Charts (or HMSCs for short)[30,28]
when MSCs are concatenated, and a similar construct exists for compositional
Message Sequence Charts [15,13,8]. We can now define causal HMSCs. Recall
that we have fixed a set P of process names and a family {(Σp, Ip)}p∈P of
Mazurkiewicz trace alphabets.

Definition 3 A causal HMSC over (P , {(Σp, Ip)}p∈P) is a structure H =
(N,Nin ,B,−→, Nfi) where N is a finite nonempty set of nodes, Nin ⊆ N
the nonempty set of initial nodes, B a finite nonempty set of causal MSCs,
−→ ⊆ N × B × N the transition relation, and Nfi ⊆ N the nonempty set of
final nodes.

A path in the causal HMSC H is a sequence ρ = n0
B1−→ n1

B2−→ · · ·
Bℓ−→ nℓ .

If n0 = nℓ, then we say ρ is a cycle. The path ρ is accepting iff n0 ∈ Nin and
nℓ ∈ Nfi . The causal MSC generated by ρ, denoted ⊚(ρ), is B1 ⊚B2 ⊚ · · ·⊚Bℓ.
We let cMSC (H) denote the set of causal MSCs generated by accepting paths
of H. Intuitively, cMSC (H) is the set of causal MSCs that can be obtained by
glueing causal MSCs one after another along paths of H. We also set Vis(H) =⋃
{Vis(M) | M ∈ cMSC (H)} and Lin(H) =

⋃
{Lin(M) | M ∈ cMSC (H)}.

Obviously, Lin(H) is also equal to
⋃
{Lin(M) | M ∈ Vis(H)}. We shall refer

to cMSC (H), Vis(H), Lin(H), respectively, as the causal language, visual
language and linearization language of H. Note that HMSCs are sometimes
formalized as MSC graphs, where MSCs label states rather than transitions.
However, this does not change the expressive power of the models.

An HMSC H = (N,Nin ,B,−→, Nfi) is defined in the same way as a causal
HMSC except that B is a finite set of MSCs, and that the concatenation op-
eration used to produce MSC languages is the weak sequential composition
◦. HMSCs can then be considered as causal HMSCs labelled with MSCs, and
equipped with empty independence relation (for every p ∈ P, Ip = ∅). Hence,
a path ρ of H generates an MSC by concatenating the MSCs along ρ with
operation ◦. We let Vis(H) denote the set of MSCs generated by accepting
paths of H with ◦, and call Vis(H) the visual language of H. Recall that
an MSC language (i.e. a collection of MSCs) L is finitely generated [23] iff

9

there exists a finite set X of MSCs satisfying the condition: for each MSC B
in L, there exist B1, . . . , Bℓ in X such that B = B1 ◦ · · · ◦ Bℓ. Many proto-
cols exhibit scenario collections that are not finitely generated. For example,
sliding window protocols can generate arbitrarily large MSCs repeating the
communication behavior shown in MSC N of Figure 2. One basic limitation
of HMSCs is that their visual languages are finitely generated. In contrast,
the visual language of a causal HMSC is not necessarily finitely generat-
ed. Consider for instance the HMSC H in Figure 1, and the independence
relations given by: Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))} and Iq = ∅.
M1 and M2 can be seen as causal MSCs, and H as a causal HMSC over
(P = {p, q}, {(Σp, Ip)(Σq, Iq)}). Clearly, Vis(H) is not finitely generated, as
it contains infinitely many MSCs similar to N of Figure 2. Throughout the
paper, we will use the following standardized graphical convention to depict
(causal) HMSCs: nodes are represented by circles, initial nodes are nodes con-
nected to a downward pointing triangle, final nodes are nodes connected to
an upward pointing triangle, and a transition t = (n,B, n′) is represented by
an arrow decorated by a rectangle containing the (causal) MSC B.

3 Regularity and Language Inclusion for causal HMSCs

3.1 Semantics for causal HMSCs

As things stand, a causal HMSC H defines three syntactically different lan-
guages, namely its linearization language Lin(H), its visual (MSC) language
Vis(H) and its causal MSC language cMSC (H). The next proposition shows
that they are also semantically different in general. It also identifies the re-
strictions under which they match semantically.

Proposition 1 Let H,H ′ be two causal HMSCs over the same family of trace
alphabets {(Σp, Ip)}p∈P . Consider the following six hypotheses:

(i) cMSC (H) = cMSC (H ′) (i)’ cMSC (H) ∩ cMSC (H ′) 6= ∅

(ii) Vis(H) = Vis(H ′) (ii)’ Vis(H) ∩ Vis(H ′) 6= ∅

(iii) Lin(H) = Lin(H ′) (iii)’ Lin(H) ∩ Lin(H ′) 6= ∅

Then we have:

• (i) ⇒ (ii), (i)′ ⇒ (ii)′, (ii) ⇒ (iii) and (ii)′ ⇒ (iii)′ but the converses
do not hold in general.

• If every causal MSC labelling transitions of H and H ′ respects {(Σp, Ip)}p∈P ,
then (i) ⇔ (ii) and (i)′ ⇔ (ii)′.

• If every causal MSC labelling transitions of H and H ′ is weak-FIFO, then
(ii) ⇔ (iii) and (ii)′ ⇔ (iii)′.

For most purposes, the relevant semantics for a causal HMSC seems to be
its visual language. However in the following we focus first in section 3.2 on
the linearization language properties of causal HMSCs. Then, we focus in

10

section 3.3 on the causal language properties. Using the above proposition 1,
it is then straightforward to translate these properties to the visual language
of causal HMSCs, when the right hypothesis apply.

3.2 Regular sets of linearizations

It is undecidable in general whether an HMSC has a regular linearization
language [24]. In the literature, a subclass of HMSCs called regular [24] (or
bounded [3]) HMSCs, has been identified. In this paper, to avoid overloading
“regular”, we shall refer to this syntactic property as “s-regular”. The im-
portance of this property lies in the fact that linearization language of every
s-regular HMSC is regular. Furthermore, one can effectively decide whether
an HMSC is s-regular. Our goal is to extend these results to causal HMSCs.

The key notion of characterizing s-regular HMSCs is that of the communi-
cation graph of an MSC. The communication graph captures intuitively the
structure of information exchanges among processes in an MSC. Given an
MSC M , its communication graph is a directed graph that has processes of
M as vertices, and contains an edge from p to q if p sends a message to q
somewhere in M . Given an HMSC H, we shall say that M is a cycle-MSC of
H if there is a cycle in H such that M is obtained by concatenating the MSCs
encountered along this cycle. H is said to be s-regular iff the communication
graph of every cycle-MSC of H is strongly connected. H is said to be globally-
cooperative [23] in case the communication graph of every cycle MSC of H is
weakly connected.

We can define a similar notion for causal MSCs. As processes do not neces-
sarily impose an ordering on events, it is natural to focus on the associated
Mazurkiewicz alphabet. Thus the communication graph is defined w.r.t. the
dependency relations {Dp}p∈P used for the concatenation while the dependen-
cies among letters of the same process are disregarded.

Definition 4 Let B = (E, λ, {⊑p},≪) be a causal MSC. The communication
graph of B is denoted by CGB, and is the directed graph (Q,Ã), where Q =
λ(E) and Ã ⊆ Q × Q is given by: (x, y) ∈ Ã iff

• x = p!q(m) and y = q?p(m) for some p, q ∈ P and m ∈ Msg, or
• xDpy.

The example of figure 5-a) shows the communication graph for the causal
MSC B1 ⊚ B2 in Figure 4. For instance, there are arrows between q?p(n) and
q!p(v) since q?p(n) Dq q!p(v). However, there is no arrow between q?p(m) and
q?p(n), even though some events of B1 ⊚ B2 labeled by q?p(m) and q?p(n)
are dependent. Note that for a pair of causal MSCs B,B′, the communication
graph CGB⊚B′ = (Q,Ã) can be computed from the communication graphs
CGB = (QB,ÃB) and CGB′ = (QB′ ,ÃB′) as follows: Q = QB ∪ QB′ and

11

Fig. 5. a) Communication graph for causal MSC B1 ⊚ B2 of Figure 4 b) A non
finitely generated s-regular causal HMSC

Ã = ÃB ∪ ÃB′ ∪
(
Q2 ∩

⋃
p∈P

Dp

)
. Hence, for a fixed set of independence

relations, if a causal MSC B is obtained by sequential composition, that is B =
B1⊚B2⊚· · ·⊚Bk, then the communication graph of B does not depend on the
respective ordering of B1, · · ·Bk, nor on the number of occurrences of each Bi.
Hence, for any permutation f on 1..k and any B′ = Bf(1) ⊚Bf(2) ⊚ · · ·⊚Bf(k),
we have that CGB = CGB′ .

In the sequel, we will say that the causal MSC B is tight iff its communication
graph CGB is weakly connected. We say that B is rigid iff its communication
graph is strongly connected. We will focus here on rigidity and study the
notion of tightness in section 3.3.

Definition 5 Let H = (N,Nin ,B, Nfi ,−→) be a causal HMSC. We say that
H is s-regular (resp. globally-cooperative) iff for every cycle ρ in H, the causal
MSC ⊚(ρ) is rigid (resp. tight).

It is easy to see that the simple protocol modeled by the causal HMSC of
Figure 5-b) is s-regular, since the only elementary cycle is labeled by two
local events a, b, one message from p to q and one message from q to p. The
communication graph associated to this cycle is strongly connected. Note that
the visual language of this causal HMSC is not finitely generated, as messages
m and n can cross between two occurrences of a and b.

There can be infinitely many cycles in H, hence Definition 5 does not give
automatically an algorithm to check whether a causal HMSC is s-regular or
globally-cooperative. However, we can use the following equivalent definition
to obtain an algorithm: H is s-regular (resp. globally-cooperative) iff for every
strongly connected subgraph G of H with {B1, . . . , Bℓ} being the set of causal
MSCs appearing in G, we have B1 ⊚ . . . ⊚ Bℓ is rigid (resp. tight). As already
discussed, the rigidity of B1 ⊚ . . . ⊚ Bℓ does not depend on the order in which
B1, . . . , Bℓ are listed. This leads to a co-NP-complete algorithm to test whether
a causal HMSC is s-regular.

Theorem 1 Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. Testing whether
H is s-regular (respectively globally-cooperative) can be done in time O((|N |2+

12

|Σ|2) · 2|B|). Furthermore these problems are co-NP complete.

Proof Sketch: we reuse the ideas in the proofs of [24,14], that is guess a subset
X = {B1, · · ·Bk} ⊆ B of causal MSCs and check that the communication
graph of B1 ⊚ · · · ⊚ Bk is not strongly connected. From this guess, it is clear
that the algorithm is co-NP. For hardness, we reuse the proof [24], that reduces
staisfiability of a boolean formula in conjunctive normal form to connectedness
of loops in HMSCs (there is a mapping from assignments of variables to paths
in a HMSC built from the formula, and a non satisfying assignment means
that the corresponding loop is connected). ¤

Theorem 2 Let H = (N,Nin ,B, Nfi ,−→) be a s-regular causal HMSC. Then
Lin(H) is a regular subset of Σ⋆, i.e. we can build an automaton AH over Σ
that recognizes Lin(H). Furthermore, the number of states of AH is at most in(
|N |2·2|Σ|·(Σ+1)K·M ·2f(K·M)

)K
, where K = |N |·|Σ|·2|B|, M = max{|B| | B ∈

B} (recall that |B| denotes the size of the causal MSC B), and the function f
is given by f(n) = 1

4
n2 + 3

2
n + O(log2 n).

In [21], the regularity of linearization languages of s-regular HMSC was proved
by using an encoding into connected traces and building a finite state automa-
ton which recognizes such connected traces. In our case, finding such embed-
ding into Mazurkiewicz traces seems impossible due to the fact that causal
MSCs need not be FIFO (we can find two messages e ≪ f and e′ ≪ f ′ such
that e ⊑ e′ and f ′ ⊑ f). Instead, we shall use techniques from the proof of
regularity of trace closures of loop-connected automata from [9,24].

The rest of this subsection is devoted to the proof of Theorem 2. We fix a
s-regular causal HMSC H as in the theorem, and show the construction of the
finite state automaton AH over Σ which accepts Lin(H). First, we establish
some technical results.

Lemma 1 Let ρ = θ1 . . . θ2 . . . θ|Σ| be a path of H, where for each i = 1 . . . |Σ|,

the subpath θi = ni,0
Bi,1
−→ ni,1 . . . ni,ℓi−1

Bi,ℓi−→ ni,0 is a cycle (these cycles need
not be contiguous). Suppose further that the sets B̂i = {Bi,1, . . . , Bi,ℓi

}, i =
1, . . . , |Σ|, are equal. Let e be an event in ⊚(θ1) and e′ an event in ⊚(θ|Σ|). Let
⊚(ρ) = (E, λ, {⊑p},≪). Then we have e ≤ e′.

Proof Sketch: As events with same labels are necessarily ordered, and com-
munication graphs do not depend on the order of MSCs, each iteration of a
loop creates a causal dependency from an even e of this loop to all events of
the next loop labelled by a successor of λ(e) in the communication graph. ¤

Let ρ = n0
B1−→ · · ·

Bℓ−→ nℓ be a path in H, where Bi = (Ei, λi, {⊑
i
p},≪i)

for i = 1, . . . , ℓ. Let ⊚(ρ) = (E, λ, {⊑p},≪,≤). A configuration of ρ is a
≤-closed subset of E. Let C be a configuration of ρ. A C-subpath of ρ is a

13

maximal subpath ̺ = nu

Bu+1

−→ . . .
Bu′

−→ nu′ , such that C ∩ Ei 6= ∅ for each
i = u, . . . , u′. For such a C-subpath ̺, we define its C-residue to be the set
(Eu+1 ∪ Eu+2 ∪ · · · ∪ Eu′) − C. Figure 6 illustrates these notions for a path

ρ = n0
B1−→ n1

B2−→ n2
B3−→ n3

B4−→ n4
B5−→ n5

B6−→ n6
B7−→ n7. Each causal MSC

is represented by a rectangle. Events in the configuration C are indicated
by small filled circles, events not in C but in the C-residues are indicated
by small blank circles, and events that are not in C nor in its residues are
indicated by blank squares. Note that the configuration contains only events
from B1, B3, B4 and B5. The two C-subpaths identified on Figure 6 are the

sequences of transitions ρ1 = n0
B1−→ n1 and ρ2 = n2

B3−→ n3
B4−→ n4

B5−→ n5

that provide the events appearing in C. One can also notice from this example
that C-subpaths do not depend on the length of the considered path, and that
the suffix of each path that does not contain an event in C can be ignored.

Fig. 6. An example of path, a configuration C, and its C-subpaths.

Lemma 2 Let ρ be a path in H and C be a configuration of ρ. Then,

(i) The number of C-subpaths of ρ is at most Ksubpath = |N | · |Σ| · 2|B|.
(ii) Let ̺ be a C-subpath of ρ. Then the number of events in the C-residue of ̺

is at most Kresidue = |N | · |Σ| · 2|B| · max{|B| | B ∈ B}.

Proof Sketch: If Ksubpath is greater than the given bound, then it allows for
the repetition of several subpaths ending on the same node of the HMSC, and
hence for the repetition of several cycles over identical sets of MSCs. After
a certain number of repetitions, it becomes impossible to build a ≤-closed
configuration, which is required but in contradiction with lemma 1. ¤

We are now ready to define the finite state automaton AH = (S, Sin , Σ, Sfi ,⇒)
which accepts Lin(H). As usual, S will be the set of states, Sin ⊆ S the
initial states, =⇒ ⊆ S × Σ × S the transition relation, and Sfi ⊆ S the
final states. Fix Ksubpath , Kresidue to be the constants defined in Lemma 2. If
B = (E, λ, {⊑p},≪) is a causal MSC and E ′ a subset of E, then we define the
restriction of B to E ′ to be the causal MSC B′ = (E ′, λ′, {⊑′

p},≪
′) as follows.

As expected, λ′ is the restriction of λ to E ′; for each p, ⊑′
p=⊑p ∩E ′ × E ′

and ≪′=≪ ∩E ′ × E ′. Note that we are slightly abusing the definition of
causal MSCs, as in restrictions, messages can be incomplete (e ∈ E ′ and
f ≪ eore ≪ f does not imply f ∈ E ′). However, as the restrictions of causal
MSCs will be performed on subsets E ′ that are closed by ≤ (e ∈ E ′ and e ≤ f
implies f ∈ E ′), restrictions will only contain unmatched receptions, that can

14

be considered as atomic actions. Hence, the concatenation defined for causal
MSCs also hold for their restrictions in what follows.

Intuitively, for a word σ in Σ⋆, AH guesses an accepting path ρ of H and checks
whether σ is in Lin(⊚(ρ)). After reading a prefix σ′ of σ, AH memorizes a
sequence of subpaths from which σ′ was “linearized” (i.e. the C-subpath of
a path ρ such that C is a configuration reached after reading σ′ and ⊚(ρ)
contains C). With Lemma 2, it will become clear later that at any time, we
should remember at most Ksubpath such subpaths. Moreover, for each subpath,
we need to know only a bounded amount of information, which will be stored
in a data structure called “segment”.

A causal MSC B = (E, λ, {⊑p},≪) is of size lower than K if |E| ≤ K. A
segment is a tuple (n, Γ,W, n′), where n, n′ ∈ N , Γ is a nonempty subset of Σ,
and W is either a non-empty causal MSC of size lower than Kresidue , or the
special symbol ⊥. The state set S of AH is the collection of finite sequences
θ1θ2 . . . θℓ, 0 ≤ ℓ ≤ Ksubpath , where each θi is a segment. Intuitively, a segment
(n, Γ,W, n′) keeps track of a subpath ̺ of H which starts at n and ends at
n′. Γ is the collection of letters of events in ⊚(̺) that have been “linearized”.
Finally, W is the restriction of ⊚(̺) to the set of events in ⊚(̺) that are not
yet linearized. In case all events in ⊚(̺) have been linearized, we set W = ⊥.
For convenience, we extend the operator ⊚ by: W ⊚⊥ = ⊥⊚W = W for any
causal MSC W ; and ⊥ ⊚ ⊥ = ⊥.

We define AH = (S, Sin , Σ, Sfi , =⇒) as follows:

• As mentioned above, S is the collection of finite sequence of at most Ksubpath

segments.
• The initial state set is Sin = {ε}, where ε is the null sequence.
• A state is final iff it consists of a single segment θ = (n, Γ,⊥, n′) such that

n ∈ Nin and n′ ∈ Nfi (and Γ is any nonempty subset of Σ).
• The transition relation =⇒ of AH is the least set satisfying the following

conditions.
—Condition (i):

Suppose n
B

−→ n′ where B = (E, λ, {⊑p},≪,≤). Let e be a minimal
event in B (with respect to ≤) and let a = λ(e). Let θ = (n, Γ,W, n′) where
Γ = {a}. Let R = E −{e}. If R is nonempty, then W is the restriction of B
to R; otherwise we set W = ⊥. Suppose s = θ1 . . . θkθk+1 . . . θℓ is a state in
S where θi = (ni, Γi,Wi, n

′
i) for each i. Suppose further that, e is a minimal

event in W1 ⊚ W2 ⊚ . . . ⊚ Wk ⊚ W .
· (“create a new segment”) Let ŝ = θ1 . . . θkθθk+1 . . . θℓ. If ŝ is in S, then

s
a

=⇒ ŝ. In particular, for the initial state ε, we have ε
a

=⇒ θ.
· (“add to the beginning of a segment”) Suppose n′ = nk+1. Let θ̂ = (n, Γ∪

Γk+1, Ŵ , n′
k+1), where Ŵ = W ⊚ Wk+1. Let ŝ = θ1 . . . θkθ̂θk+2 . . . θℓ. If ŝ is

in S, then s
a

=⇒ ŝ.

15

· (“append to the end of a segment”) Suppose n = n′
k. Let θ̂ = (nk, Γk ∪

Γ, Ŵ , n′), where Ŵ = Wk ⊚ W . Let ŝ = θ1 . . . θk−1θ̂θk+1 . . . θℓ. If ŝ is in S,
then s

a
=⇒ ŝ.

· (“glue two segments”) Suppose n = n′
k and n′ = nk+1. Let θ̂ = (nk, Γk∪Γ∪

Γk+1, Ŵ , n′
k+1), where Ŵ = Wk⊚W ⊚Wk+1. Let ŝ be θ1 . . . θk−1θ̂θk+2 . . . θℓ.

If ŝ is in S, then s
a

=⇒ ŝ.

—Condition (ii):
Suppose s = θ1 . . . θkθk+1 . . . θℓ is a state in S where θi = (ni, Γi,Wi, n

′
i)

for i = 1, 2, . . . , ℓ. Suppose Wk 6= ⊥. Let Wk = (Rk, ηk, {⊑
k
p},≪k,≤k) and

e a minimal event in Wk. Suppose further that e is a minimal event in
W1 ⊚ W2 ⊚ . . . ⊚ Wk.

Let θ̂ = (nk, Γk ∪ {a}, Ŵ , n′
k), where Ŵ is defined as follows. Let R̂ =

Rk −{e}. If R̂ is nonempty, then Ŵ is the restriction of W to R̂; otherwise,
set Ŵ = ⊥. Let ŝ = θ1 . . . θk−1θ̂θk+1 . . . θℓ. Then we have s

a
=⇒ ŝ, where

a = ηk(e). (Note that ŝ is guaranteed to be in S.)

We have now completed the construction of AH . It remains to show that AH

recognizes Lin(H).

Lemma 3 Let σ ∈ Σ⋆. Then σ is accepted by AH iff σ is in Lin(H).

Proof : Let σ = a1a2 . . . ak. Suppose σ is in Lin(H). Let ρ = n0
B1−→ . . .

Bℓ−→ nℓ

be an accepting path in H such that σ is a linearization of ⊚(ρ). Hence we
may suppose that ⊚(ρ) = (E, λ, {⊑p},≪,≤) where E = {e1, e2, . . . , ek} and
λ(ei) = ai for i = 1, . . . , k. And ei ≤ ej implies i ≤ j for any i, j in {1, . . . , k}.
Consider the configurations Ci = {e1, e2, . . . , ei} for i = 1, . . . , k. For each
Ci, we can associate a state si in AH as follows. Consider a fixed Ci. Let
ρ = . . . ̺1 . . . ̺2 . . . ̺h . . . where ̺1, ̺2, . . ., ̺h are the Ci-subpaths of ρ. Then
we set si = θ1 . . . θh where θj = (nj, Γj,Wj, n

′
j) with nj being the starting node

of ̺j, and Γj the collection of all λ(e) for all events e that are in both ⊚(̺j)
and Ci. Let Rj be the Ci-residue of ̺j. If Rj is nonempty, Wj is the causal
MSC (Rj, ηj, {⊑

j
p},≪j,≤j) where ηj is the restriction of λ to Rj; ⊑

j
p is the

restriction of ⊑p to those events in Rj that belong to process p, for each p;
and ≪j the restriction of ≪ to Rj. If Rj is empty, then set Wj = ⊥. Finally,
n′

j is the ending node of ̺j.

Now it is routine (though tedious) to verify that ε
a1=⇒ s1 . . . sk−1

ak=⇒ sk is an
accepting run of AH . Conversely, given an accepting run of AH over σ, it is
straightforward to build a corresponding accepting path of H. ¤

With Lemma 3, we establish Theorem 2. As for complexity, the number of
states in AH is at most (Nseg)

Ksubpath , where Nseg is the maximal number of
segments. Now, Nseg is |N |2 · 2|Σ| · Nres, where Nres is the possible number
of residues. Recall that a residue is of size at most Kresidue. According to
Kleitman & Rotschild [20], the number of partial orders of size k is in 2f(k)

where f(k) = 1
4
k2 + 3

2
k +O(log2(k)). It follows that the number of |Σ|-labeled

16

posets of size k is in 2f(k) · |Σ|k. All residues of size up to k can be encoded
as a labeled poset of size k with useless events, labelled by a specific label ♯.
Hence the number of residues Nres is lower than 2f(Kresidue) · (|Σ| + 1)Kresidue .
Combining the above calculations then establishes the bound in theorem 2 on
the number of states of AH .

3.3 Inclusion and Intersection of causal HMSC Languages

It is known that problems of inclusion, equality and non-emptiness of the inter-
section of the MSC languages associated with HMSCs are all undecidable [24].
Clearly, these undecidability results also apply to the causal languages of
causal HMSCs. As in the case of HMSCs, theses problems are decidable for
s-regular causal HMSCs since their linearization languages are regular.

It is natural to ask whether we can still obtain positive results for these prob-
lems beyond the subclass of s-regular causal HMSCs. In the setting of HMSCs,
one can show that for all K ≥ 0, the set of K-bounded linearizations of any
globally-cooperative HMSC is regular. Moreover, for a suitable choice of K,
the set of K-bounded linearizations is sufficient for effective verification [13].
Unfortunately, this result uses Kuske’s encoding [21] into traces that is based
on the existence of an (existential) bound on communication channels. Conse-
quently, this technique does not apply to globally-cooperative causal HMSCs,
as the visual language of a causal HMSC needs not be existentially bound-
ed. For instance, consider the causal HMSC H of Figure 7. It is globally-
cooperative and its visual language contains the MSCs of the form shown in
the right part of Figure 7, which contain an arbitrary number of messages from
p to r, that have to be sent before a message m from p to q is sent. In order to
receive the first message from p to r, the message from p to q and the message
from q to r have to be sent and received in every MSC of V is(H). Hence every
message from p to r has to be sent before receiving the first message from p
to r, in every MSC of V is(H), which means that there H is not existentially
bounded.

Fig. 7. A globally-cooperative causal HMSC that is not existentially bounded

We shall instead adapt the notion of atoms [1,17] and the techniques from [14].

Definition 6 A causal MSC B is a basic part (w.r.t. the trace alphabets
{(Σp, Ip)}p∈P) if there do not exist causal MSCs B1, B2 such that B = B1⊚B2.

Note that we require that the set of events of a causal MSC is not empty.

17

Now for a causal MSC B, we define a decomposition of B to be a sequence
B1 · · ·Bℓ of basic parts such that B = B1 ⊚ · · ·⊚Bℓ. For a set B of basic parts,
we associate a trace alphabet (B, IB) (w.r.t. the trace alphabets {(Σp, Ip)}p∈P)
where IB is given by: B IB B′ iff for every p, for every α ∈ Alphp(B), for every
α′ ∈ Alphp(B

′), it is the case that α Ip α′. We let ∼B be the corresponding trace
equivalence relation and denote the trace containing a sequence u = B1.Bℓ

in B⋆ by [u]B (or simply [u]). For a language L ⊆ B⋆, we define its trace closure
[L]B =

⋃
u∈L

[u]B. We begin by proving that the decomposition of any causal MSC

B is unique up to commutation. More precisely,

Proposition 2 Let B1 . . . Bk be a decomposition of a causal MSC B. Then
the set of decompositions of B is [B1 . . . Bk].

Proof : It is clear that every word in [B1 . . . Bk] is a decomposition of B. For the
converse, let us suppose that there exists a decomposition B = W1⊚W2⊚· · ·⊚
Wq such that W1 . . . Wq /∈ [B1 . . . Bk]. It means that there exists a permutation
φ and an index i with Wj = Bφ(j) for all j < i, Bφ(1) · · ·Bφ(k) ∈ [B1 . . . Bk], and
W ′ = Wi ∩ Bφ(i) 6= ∅ and W ′′ = Wi \ Bφ(i) 6= ∅. It suffices now to prove that
W ′ and W ′′ are causal MSCs and that Wi = W ′ ⊚ W ′′ to get a contradiction
with the fact that Wi is a basic part. By definition, the restriction of ≪Wi

to
W ′ is still a bijection (a send in W ′ matches a receive in W ′). It implies that
the restriction of ≪Wi

to W ′′ is a bijection too. Both W ′ and W ′′ are thus
causal MSCs. The fact that Wi = W ′ ⊚ W ′′ comes from the definition of ⊚

and from the fact that W ′ ⊆ Bφ(i) and W ′′ ⊆ Bφ(i+1) · · ·Bφ(k). ¤

It is thus easy to compute the (finite) set of basic parts of a causal MSC B,
denoted Basic(B), since it suffices to find one of its decompositions.

Proposition 3 For a given causal MSC B, we can effectively decompose B
in time O(|B|2).

Proof Sketch: We can reuse the quadratic techniques of [17]. ¤

In view of Proposition 3, we assume through the rest of this section that
every transition of a causal HMSC H is labelled by a basic part. This obvi-
ously incurs no loss of generality, since we can simply decompose each causal
MSC in H into basic parts and decompose any transition of H into a se-
quence of transitions labeled by these basic parts. Given a causal HMSC H,
we let Basic(H) be the set of basic parts labelling transitions of H. Trivial-
ly, a causal MSC is uniquely defined by its basic part decomposition. Then
instead of the visual language we can use the basic part language of H, de-
noted by BP(H) = {B1 . . . Bℓ ∈ Basic(H)⋆ | B1 ⊚ . . . ⊚ Bℓ ∈ cMSC (H)}.
Notice that BP(H) = [BP(H)] by Proposition 2, that is, BP(H) is closed by
commutation. We can also view H as a finite state automaton over the alpha-

bet Basic(H), and denote by LBasic(H) = {B1 · · ·Bℓ ∈ Basic(H)⋆ | n0
B1−→

n1 · · ·
Bℓ−→ nℓ is an accepting path of H} its associated (regular) language. We

18

now relate BP(H) and LBasic(H).

Proposition 4 Let H be a causal HMSC. Then BP(H) = [LBasic(H)].

Proof : First, let us take a word w in [LBasic(H)]. Thus w = B1 . . . Bk ∼
Bi1 . . . Bik such that Bi1 . . . Bik ∈ LBasic(H). As LBasic(H) ⊆ BP (H) and
B1 ⊚ . . . ⊚ Bk = Bi1 ⊚ . . . ⊚ Bik we conclude that [LBasic(H)] ⊆ BP (H).
Second, let us take a word w in BP (H). Let us note ⊚(w) its corresponding
causal MSC, i.e. for w = B1 . . . Bk, ⊚(w) = B1 ⊚ . . . ⊚ Bk. Then this word

is generated by an accepting path ρ = n0
P1−→ n1 . . .

Pl−→ nl of H such that
⊚(w) = P1⊚ . . .⊚Pl. By proposition 2, we know that any other decomposition
of ⊚(w) belongs to [B1 . . . Bk], and in particular, the one we choose. Thus we
obtain that BP (H) ⊆ [LBasic(H)]. ¤

Assuming we know how to compute the trace closure of the regular language
LBasic(H), we can obtain BP(H) with the help of Proposition 4. In general, we
cannot effectively compute this language. However if H is globally-cooperative,
then [LBasic(H)] is regular and a finite state automaton recognizing [LBasic(H)]
can be effectively constructed [9,24]. Considering globally-cooperative causal
HMSCs as finite state automata over basic parts, we can apply [24] to obtain
the following decidability and complexity results:

Theorem 3 Let H,H ′ be causal HMSCs over the same family of trace al-
phabets {(Σp, Ip)}p∈P . Suppose H ′ is globally-cooperative. Then we can build a
finite state automaton A′ over Basic(H ′) such that LBasic(A

′) = [LBasic(H
′)].

Moreover, A′ has at most 2O(n·b) states, where n is the number of nodes in H
and b is the number of basic parts in Basic(H). Consequently, the following
problems are decidable:

(i) Is cMSC (H) ⊆ cMSC (H ′)?
(ii) Is cMSC (H) ∩ cMSC (H ′) = ∅?

Furthermore, the complexity of (i) is PSPACE-complete and that of (ii) is
EXPSPACE-complete.

The above theorem shows that we can model-check a causal HMSC against a
globally-cooperative causal HMSC specification. Note that we can only apply
Theorem 3 to two causal HMSCs over the same family of trace alphabets. If
the causal HMSCs H,H ′ in theorem 3 satisfy the additional condition that
every causal MSC labeling the transitions of H and H ′ respects {(Σp, Ip)}p∈P ,
then we can compare the visual languages Vis(H) and Vis(H ′), thanks to
Proposition 1.

On the other hand, if the independence relations are different, the atoms of H
and H ′ are unrelated. Theorem 4 proves that comparing the MSC languages
of two globally-cooperative causal HMSCs H,H ′ using different independence
relations is actually undecidable. The only way to compare them is then to
compare their linearization languages. Consequently, we would need to work

19

with s-regular causal HMSCs.

Theorem 4 Let G,H be globally-cooperative causal HMSCs with respectively
families of trace alphabets {(Σp, Ip)}p∈P and {(Σp, Jp)}p∈P , where for each p,
Ip and Jp are allowed to differ. Then it is undecidable to determine whether
Vis(G) ∩ Vis(H) = ∅.

Proof Sketch: We can encode a PCP with two HMSCs H1 and H2, defined
over 3 processes P1,P2,P3. H1 represents the words (vi, wi) in the PCP with
causal HMSCs, with loops of the form (V i.Wi), and lets everything commute
on P2, P3. H2 forces all receptions of messages from Vi’s to be followed by
their counterpart in Wi’s, and does not allow commutations in V × V nor in
W × W . ¤

4 Window-bounded causal HMSCs

One of the chief attractions of causal MSCs is that they enable the specification
of behaviors containing braids of arbitrary size such as those generated by
sliding windows protocols. Very often, sliding windows protocols appear in a
situation where two processes p and q exchange bidirectional data. Messages
from p to q are of course used to transfer information, but also to acknowledge
messages from q to p. If we abstract the type of messages exchanged, these
protocols can be seen as a series of query messages from p to q and answer
messages from q to p. Implementing a sliding window means that a process may
send several queries in advance without needing to wait for an answer to each
query before sending the next query. Very often, these mechanisms tolerate
losses, i.e. the information sent is stored locally, and can be retransmitted if
needed (as in the alternating bit protocol). To avoid memory leaks, the number
of messages that can be sent in advance is often bounded by some integer k,
that is called the size of the sliding window. Note however that for scenario
languages defined using causal HMSCs, such window sizes do not always exist.
This is the case for example for the causal HMSC depicted in Figure 1 with
independence relations Ip = {((p!q(Q), p?q(A)), (p?q(A), p!q(Q)))} and Iq =
{((q?p(Q), q!p(A)), (q!p(A), q?p(Q))}. The language generated by this causal
HMSC contains scenarios where an arbitrary number of messages from p to
q can cross an arbitrary number of messages from q to p. A question that
naturally arises is to know if the number of messages crossings is bounded by
some constant in all the executions of a protocol specified by a causal HMSC.
In what follows, we define these crossings, and show that their boundedness
is a decidable problem.

Definition 7 Let M = (E, λ, {⊑p},≪) be an MSC. For a message (e, f) in
M , that is, (e, f) ∈ ≪, we define the window of (e, f), denoted WM(e, f),
as the set of messages {e′ ≪ f ′ | loc(λ(e′)) = loc(λ(f)) and loc(λ(f ′)) =
loc(λ(e)) and e ≤ f ′ and e′ ≤ f}.

20

Fig. 8. Window of message m1

We say that a causal HMSC H is K-window-bounded iff for every M ∈ Vis(H)
and for every message (e, f) of M , it is the case that |WM(e, f)| ≤ K. H is
said to be window-bounded iff H is K-window-bounded for some K.

Figure 8 illustrates notion of window, where the window of the message m1

(the first answer from q to p) is symbolized by the area delimited by dotted
lines. It consists of all but the first message Q from p to q. Clearly, the causal
HMSC H of Figure 1 is not window-bounded. We now describe an algorithm
to effectively check whether a causal HMSC is window bounded. It builds a
finite state automaton whose states remember the labels of events that must
appear in the future of messages (respectively in the past) in any MSC of
Vis(H).

Formally, for a causal MSC B = (E, λ, {⊑p},≪) and (e, f) ∈≪ a message of
B, we define the future and past of (e, f) in B as follows:

FutureB(e, f) = {a ∈ Σ | ∃x ∈ E, f ≤ x ∧ λ(x) = a}

PastB(e, f) = {a ∈ Σ | ∃x ∈ E, x ≤ e ∧ λ(x) = a}

Notice that for a message m = (e, f), we always have λ(e) ∈ PastB(m) and
λ(f) ∈ FutureB(m). For instance, in Figure 8, PastB(m1) = {p!q(Q), q?p(Q),
q!p(A)}. Intuitively, if a letter of the form p!q(Q) is in FutureB(m) of a message
(e, f) in a causal MSC B, then any message Q from p to q that appears in a
MSC B′ that is appended to B is in the causal future of (e, f). Hence, it can
not appear in the window of (e, f). Note that a symmetric property holds for
the past of (e, f). Then from the definitions, we obviously obtain the following
proposition.

Proposition 5 Let B = (E, λ, {⊑p},≪) and B′ = (E ′, λ′, {⊑′
p},≪

′) be two
causal MSCs, and let m ∈≪ be a message of B. Then,

−FutureB⊚B′(m) = FutureB(m) ∪ {a′ ∈ Σ | ∃x, y ∈ E ′

∃a ∈ FutureB(m) s.t. λ(y) = a′ ∧ x ≤′ y ∧ a Dloc(a) λ(x)}

−PastB′⊚B(m) = PastB(m) ∪ {a′ ∈ Σ | ∃x, y ∈ E ′

∃a ∈ PastB(m) s.t. λ(y) = a′ ∧ y ≤′ x ∧ a Dloc(a) λ(x)}

21

Let B be a causal MSC, and let m be a message of B. Clearly, if a message
n appears both in its past and future sets of m (p!q(n) ∈ PastB(m) and
p!q(n) ∈ FutureB(m)), then the window of message m contains a bounded
number of occurrences of messages n in any concatenation B′ ⊚ B ⊚ B′′.
Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. Consider a path ρ of H
with ⊚(ρ) = B1 ⊚ · · · ⊚ Bℓ and a message m in B1. First, the sequence of
sets FutureB1

(m), FutureB1⊚B2
(m), . . ., FutureB1⊚···⊚Bℓ

(m) is non-decreasing.
Using proposition 5, these sets can be computed on the fly and with a finite
number of states. Similar arguments hold for the past sets. Now consider a
message (e, f) in a causal MSC B labelling some transition t of H. With the
above observation on Future and Past , we can show that, if there is a bound
K(e,f) such that the window of a message (e, f) in the causal MSC generated by
any path containing t is bounded by K(e,f), then K(e,f) is at most b|N ||Σ| where
b = max{|B| | B ∈ B}. Further, we can effectively determine whether such
a bound K(e,f) exists by constructing a finite state transition system whose
states memorize the future and past of (e, f). Thus we have the following:

Theorem 5 Let H = (N,Nin ,B,−→, Nfi) be a causal HMSC. Then we have:

(i) If H is window-bounded, then H is K-window-bounded, where K is at most
b · |N | · |Σ|.

(ii) Further, we can effectively determine whether H is window-bounded in time
O(s · |N |2 · 2|Σ|), where s is the sum of the sizes of causal MSCs in B.

Proof Sketch: We build two automata that behave as the original HMSCs,
then chose nondeterministically a message m, and then memorize the Future
or Past of the message. Future and Past are increasing, and bounded. Hence
these automata are finite. Then, if one of these automata contains a cycle that
allows for the repetition of a message m′ that is not in the Future (resp. past)
of m, then the window of m is not bounded. ¤

5 Relationship with Other Scenario Models

We compare here the expressive power of causal HMSCs with two other
well-studied scenario languages, namely HMSCs and compositional HMSCs.
For comparison, we will only consider weak-FIFO scenario languages, that is
HMSCs that are labelled by weak FIFO MSCs and causal HMSCs that are
labelled by causal MSCs which visual extensions are weak-FIFO. Indeed, non
weak-FIFO scenarios can be seen as a little degenerate descriptions, as they
can be differentiated by their visual languages, but not by their linearization
languages. Hence, within this weak-FIFO setting, the comparisons established
in this section holds both for visual languages and linearization languages.

The first topic of comparison is causal HMSCs themselves. A previous defi-
nition [12] of s-regular and globally-cooperative causal HMSCs required that
for every p ∈ P, and for every B labeling a cycle of a causal HMSC, Alphp(B)
was Dp-connected (i.e. the undirected graph (Alphp(B), Dp) is connected). It
is not necessary in the definition of this paper: two letters from the same pro-

22

cess can be connected through communication via another process, and not
directly on the same process.

An important question is the class of Communicating Finite State Machine
(CFM for short) corresponding to HMSC languages. It has been shown in [16]
that regular (compositional) HMSCs corresponds to universally bounded CFMs.
The natural model to compare causal HMSCs and CFMs could be asyn-
chronous cellular automata with type [4], also called mixed machine in [11],
which allows communication both through Mazurkiewicz traces and messages.
It has been shown in [11] that using the same s-regular definition as in this
paper, universally bounded mixed model and s-regular causal (compositional)
HMSCs coincide. It is easy to see that this is not the case with the old def-
inition of [12]. Consider the following example: a causal HMSC composed of
a single loop labelled by a causal MSC M1 that contains four unordered mes-
sages: m, o from process p to process q, and n, g from process q to process p.
The dependence relation Dp is defined as the reflexive and symmetric closure
of {(p!q(m), p?q(g)); (p?q(n), p!q(o))} and Dq = Σq×Σq. This example and the
communication graph associated to its single loop are represented in Figure 9.
Clearly, this causal HMSC is not s-regular nor even globally-cooperative with
the definition of [12] (Σp is not Dp-connected), but it is s-regular with the
definition of this paper. Also, there is no globally-cooperative causal HMSC
in the terms of [12] recognizing the same language.

Fig. 9. A s-regular causal HMSC with the communication graph of its cycle

Then, we consider HMSCs. The standardized language allows for partial oder-
ing along instance line, by using coregions (a subset of events located on the
same process) and general ordering (that defines more or less a partial order)
on events located in these coregions. However, outside coregion, events are sup-
posed totally ordered. Hence, coregions relax this total ordering only on a finite
set of events contained in a single MSC, while the commutation mechanism
provided by causal HMSCs allows for concurrency in sets of events of arbitrary
size. Two important strict HMSC subclasses are (i) s-regular (also called reg-
ular in [24] and bounded in [3]) HMSCs which ensure that the linearizations
form a regular set and (ii) globally-cooperative HMSCs [14], which ensure that
for a suitable choice of K, the set of K-bounded linearizations form a regu-
lar representative set. By definition, causal HMSCs, s-regular causal HMSCs
and globally-cooperative causal HMSCs extend respectively HMSCs, s-regular

23

HMSCs and globally-cooperative HMSCs.

Figure 7 shows a globally-cooperative causal HMSC which is not in the sub-
class of s-regular causal HMSCs. Thus, s-regular causal HMSCs form a strict
subclass of globally-cooperative causal HMSCs. Trivially, globally-cooperative
causal HMSCs are a strict subclass of causal HMSCs. Figure 5-b) displays
a s-regular causal HMSC whose visual language is not finitely generated. It
follows that (s-regular/globally-cooperative) causal HMSCs are strictly more
expressive than (s-regular/globally-cooperative) HMSCs.

Another extension of HMSCs is compositional HMSCs (or CHMSCs for short),
first introduced by [15]. CHMSCs generalize HMSCs by allowing dangling
message-sending and message-reception events, i.e. the message pairing re-
lation ≪ in a compositional MSC is only a partial non-surjective mapping
contained in E! × E?. The concatenation of two compositional MSCs M ◦ M ′

performs the instance-wise concatenation as for MSCs, and computes a new
message pairing relation ≪′′ defined over (E! ∪ E ′

!) × (E? ∪ E ′
?) extending

≪ ∪ ≪′, and preserving the FIFO ordering of messages with similar content
(actually, in the definition of [15], there is no channel content). We refer here to
the definition of [8], where compositional HMSCs generate weak-FIFO MSCs.
Note that so far, compositional HMSCs do not allow for non-weak-FIFO de-
scription, but that a small variant of the language could easily be defined
to allow this kind of description (as long as non FIFOness remains inside a
node of the CHMSC). Note also that dangling messages were also proposed
in [27,19], but that thay are interpreted as atomic actions.

A CHMSC H generates a set of MSCs, denoted Vis(H) by abuse of notation,
obtained by concatenation of compositional MSCs along a path of the graph.
With this definition, some path of a CHMSC may not generate any correct
MSC. Moreover, a path of a CHMSC generates at most one MSC. The class
of CHMSC for which each path generates exactly one MSC is called safe
CHMSC [15,13], still a strict extension over HMSCs. S-regular and globally-
cooperative HMSCs have also their strict extensions in terms of safe CHMSCs,
namely as s-regular CHMSC and globally-cooperative CHMSCs.

Let us now compare causal HMSCs and CHMSCs. It is not hard to build a
regular compositional HMSC which MSC language can not be defined with a
causal HMSC. An example is a CHMSC H that generates the visual language
Vis(H) = {Mi | i = 0, 1, . . .}, where each Mi consists of an emission of a
message m from p to r, then a sequence of i blocks of three messages: a
message n from p to q followed by a message o from q to r then a message s
from r to p. And at last the reception of message m on r. This MSC language
is represented in Figure 10-a). This visual language can be easily defined with
a CHMSC, by separating emission and reception of m and iterating a MSC
containing messages n, o, s an arbitrary number of times. Clearly, this Vis(H)

24

sr HMSC sr CaHMSC sr CHMSC

gc HMSC

gc CaHMSC

gc CHMSC

HMSC

CaHMSC

s CHMSC

CHMSC

Causal Compositional

regular

 globally
cooperative

 finitely
generated

Fig. 10. a) A regular (but not finitely generated) set of MSCs b) Comparison of
Scenario languages

is not finitely generated, and it is not either the visual language of a causal
HMSC. Assume for contradiction, that there exists a causal HMSC G with
Vis(G) = Vis(H). Let k be the number of messages of the biggest causal
MSC which labels a transition of G. We know that Mk+1 is in Vis(G), hence
Mk+1 ∈ Vis(⊚(ρ)) for some accepting path ρ of G. Let N1, . . . , Nℓ be causal
MSCs along ρ, where ℓ ≥ 2 because of the size k. It also means that there exist
N ′

1 ∈ Vis(N1), . . ., N ′
ℓ ∈ Vis(Nℓ) such that N ′

1 ◦ · · · ◦N ′
m ∈ Vis(G). Thus, N1 ◦

· · ·◦Nℓ = Mj for some j, a contradiction since Mj is a basic part (i.e. cannot be
the concatenation of two MSCs). That is (s-regular) compositional HMSCs are
not included into causal HMSCs. On the other hand, s-regular causal HMSCs
have a regular set of linearizations (Theorem 2). Also by the results in [16], it is
immediate that the class of visual languages of s-regular compositional HMSCs
captures all the MSC languages that have a regular set of linearizations. Hence
the class of s-regular causal HMSCs is included into the class of s-regular
compositional HMSCs. Last, we already know with Figure 7 that globally-
cooperative causal HMSCs are not necessarily existentially bounded, hence
they are not included into safe compositional HMSC.

The relationships among these scenario models are summarized by Figure 10-
b), where arrows denote strict inclusion of visual languages. Two classes are
incomparable if they are not connected by a transitive sequence of arrows. We
use the abbreviation sr for s-regular, gc for globally-cooperative, s for safe,
CaHMSC for causal HMSCs and CHMSC for compositional HMSCs.

In this paper, we mainly considered scenario languages and compared them
with respect to their expressive power. There are numerous specification lan-
guages, ranging from finite state automata, Petri nets, process algebra, to
communicating finite state machines. Causal MSCs and all these models are
uncomparable in general. For instance, one can not implement any bounded
protocol (hence described with an automaton) using causal HMSCs. We al-
ready know that the linearization languages of some (causal) HMSCs can not
be expressed with finite automata nor Petri Nets. However, one can always
find a Petri Net which language contains all linearizations of a HMSC [6]. This

25

question remains open for causal HMSCs. Similarly, [13] has proved that com-
municating finite state machines and globally cooperative compositional MSCs
have the same expressive power. Similar question is open for causal HMSCs,
but as already mentionned, asynchronous cellular automata with type [4] seem
to be an adequate implementaion model. From a more practical point of view,
causal HMSCs satisfy an essential need that was not satisfied by classical
HMSCs, i.e. the possibility to define TCP-like protocols. As mentioned in in-
troduction, choice of a formal model is often a tradeof between expressive
power and decidability. With respect to these criteria, causal HMSCs are very
satisfactory: it is an expressive non-interleaved model, that can specify braid-
like protocol while keeping some interesting properties decidable. Beyond ex-
pressive power, specification languages based on composition of partial orders
also have known drawbacks, as model checking of some temporal logics is
undecidable without syntactical restrictions [24].

6 A Detailed Example

We consider the TCP sliding window mechanism to show the usefulness and
the expressive power of causal HMSCs. The Transmission Control Protocol
(TCP) is one of the core protocols of Internet. Using TCP, applications on
networked hosts can create point-to-point connections to one another, over
which they can exchange data in packets. The protocol guarantees reliable
and in-order delivery of data from sender to receiver. TCP also distinguishes
data for multiple connections by concurrent applications (e.g. Web server and
e-mail server) running on the same host.

We first explain the relevant aspects of the TCP protocol [29]. For reasons of
simplicity and readability, we shall abstract away some of the technical aspects
of the protocol when constructing a model. The classical TCP is divided into
3 parts. The first one is connection establishment. The procedure to establish
connections uses a synchronize (syn) packet and involves an exchange of three
messages. This exchange is called a three-way handshake [7]. Once a connec-
tion is established it can be used to carry data in both directions, that is,
the connection is ”full duplex”. This connection phase can be modeled using
MSCs, as shown in Figure 11. In this example, MSC Connect12 describes the
case when process 1 initiates a connection, and MSC Connect21 the case when
process 2 initiates the connection. When a process executes an event labeled
by start, it is ready to begin the data transfer phase of TCP.

The second phase of the TCP protocol is data transfer. TCP is able to transfer
a continuous stream of bytes in each direction between its users by packaging
some number of bytes into segments for transmission through the Internet
system. TCP uses sequence numbering in order to recover from data that is
damaged, lost, duplicated, or delivered out of order by the Internet commu-
nication system. This is achieved by assigning a sequence number to each

26

Fig. 11. Connection establishment between process 1 and process 2.

segment transmitted, and requiring a positive acknowledgment (ack) from the
receiving tcp. Actually, the sequence number of ack sent by process p is the se-
quence number of the next tcp packet that p expects. Figure 12 shows a causal
HMSC modeling a bi-directional data transfer, where sequence numbers are
abstracted.

Fig. 12. Data transfer between process 1 and process 2.

The last phase of the TCP protocol is connection termination. The connection
termination phase uses a four-way handshake. Each side of the connection
terminates the session independently. When an endpoint wishes to stop its half
of the connection, it transmits a fin packet, which the other end acknowledges
with an ack. Therefore, a typical tear-down requires a pair of fin and ack
segments from each tcp endpoint. The four-way handshake is modeled on
figure 13: an end event is seen on process p when no more tcp packets are sent
from p. In MSC Fin1, process 1 stops first, and process 2 can continue to
send tcp packets, then process 2 stops. In MSC Fin12, process 1 and process
2 stop at the same time. In MSC Fin2 process 2 initiates the termination of
the communication, and then process 1 stops.

Fig. 13. The TCP connection termination.

A connection can be ”half-open” when one side has terminated its connection,
but not the other. The side that has terminated can no longer send data using
this connection, but the other side can. Finally, it is possible for both hosts
to send fin simultaneously. In this case, both sides just have to send ack
packets to terminate the TCP connection. This can be considered as a 2-way
handshake since the fin/ack sequence is done in parallel in both directions.

27

Automata of Figure 11, Figure 12 and Figure 13 model the 3 phases of TCP
protocol. A complete description of the TCP protocol with MSCs can be
obtained as a composition of these tree models, just by performing a classical
sequential composition of the automata, as shown on Figure 14.

So far, we have proposed scenario descriptions of the TCP protocol, and pro-
vided the HMSCs describing the typical executions of TCP, but we did not
define the commutation relation over events of the protocol that allows for
the interleaving of different phases of the protocol. Let us define the local
dependency relations Dp for process p in {Process1, P rocess2}. If we chose
the normal weak concatenation, as defined in HMSCs, i.e. Dp = Σp × Σp,
we obtain a synchronized execution of data transfer phase: every process
send only one tcp packet and waits for the corresponding ack packet. Mid-
dle part of figure 14 describes this kind of execution, for the (causal) HMSC
depicted in the left part of the figure. Note however that in an implemen-
tation of the TCP protocol, data transfer from the two sites can be per-
formed in parallel. Hence, the classical sequential composition of HMSCs does
not suffice to model interesting behaviors of TCP. Moreover, processes can
send tcp packets without waiting for acknowledgments. Thus, events occur-
ring between p(start) and p(end) can occur in any order in a visual extension,
i.e. Ip = {p!q(tcp), p?q(ack), p?q(tcp), p!q(ack), p?q(fin)}2 − {(a, a) ∈ Σ2

p} for
each process p in {Process1, P rocess2} and q = {Process1, P rocess2} \ {p}.
An execution of this causal HMSC is shown on the right part of figure 14.

Fig. 14. A (causal) HMSC model of the TCP protocol, and two executions of the
TCP example, with the HMSC semantics (in the middle) and with the causal HMSC
semantics (on the right).

Note that the causal HMSC model of TCP in Figure 14 is not s-regular, and its
linearization language is not regular either: this means this protocol cannot

28

be modeled by classical communicating finite state machines. Furthermore,
this model is not window bounded, as an infinite number of ack messages
can cross tcp ones. Finally, this causal HMSC H is not globally-cooperative,
as the cycle labeled by Comm12.Comm21 does not have a weakly connected
communication graph. However, it is possible [11] to show that the language
of H viewed as an automaton on basic parts is closed by commutation, that
is LBasic(H) = [LBasic(H)]. In this case, we can apply directly the second
part of Theorem 3 with A′ equal to H ′. Consequently, this protocol can be
model-checked against any property described by a causal HMSC.

Consider for instance the causal HMSC of Figure 15. Let us call Hbad the
HMSC H of Figure 14 in which the data transfer part (the two cycles over
Comm21 and Comm12) is replaced by the erroneous data protocol in Fig-
ure 15. Then, if cMSC(H)∩ cMSC(Hbad) 6= ∅, we have proved that there are
(undesired) behaviors of our protocol where tcp messages are not acknowl-
edged. In a similar way, we can easily check that no message is sent after the
connection has been closed.

Fig. 15. Unacknowledged TCP packets

7 Conclusion

We have defined an extension of HMSC called causal HMSC that allows the
definition of braids, such as those appearing in sliding window protocols. We
have also identified in this setting, many subclasses of scenarios that were
defined for HMSCs which have decidable verification problems. An interest-
ing class that emerges is globally-cooperative causal HMSCs. This class is
incomparable with safe compositional HMSCs because the former can gener-
ate scenario collections that are not existentially bounded. Yet, decidability
results of verification can be obtained for this class.

An interesting open problem is deciding whether the visual language of a
causal HMSC is finitely generated. Yet another interesting issue is to consider
the class of causal HMSCs whose visual languages are window-bounded. The
set of behaviors generated by these causal HMSCs seems to exhibit a kind of
regularity that could be exploited. Finally, designing suitable machine models
(along the lines of Communicating Finite Automata [5]) is also an important
future line of research.

29

References

[1] M. Ahuja, A.D. Kshemkalyani, and T. Carlson. A Basic Unit of Computation
in Distributed Sytems. In Proc. of ICDS’90, pages 12–19, 1990.

[2] R. Alur, G.J. Holzmann, and D. Peled. An analyzer for Message Sequence
Charts. In Proc. of TACAS’96, number 1055 in LNCS, pages 35–48, 1996.

[3] R. Alur and M. Yannakakis. Model checking of Message sequence Charts. In
Proc. of CONCUR’99, number 1664 in LNCS, pages 114–129. Springer, 1999.

[4] B. Bollig. On the Expressiveness of Asynchronous Cellular Automata. In FCT,
pages 528–539, 2005.

[5] D. Brand and P. Zafiropoulo. On Communicating Finite State Machines.
Technical Report RZ1053, IBM Zurich Research Lab, 1981.

[6] Benôıt Caillaud, Philippe Darondeau, Löıc Hélouët, and Gilles Lesventes.
Hmscs as partial specifications ... with pns as completions. In MOVEP, pages
125–152, 2000.

[7] Y. Dalal and C. Sunshine. Connection Management in Transport Protocols.
Computer Networks, 2(6):454–473, 1978.

[8] P. Darondeau, B. Genest, and L. Hélouet. Products of message sequence charts.
In FOSSACS 2008, number 4962 in LNCS, pages 459–474, 2008.

[9] V. Diekert and G. Rozenberg, editors. The Book of Traces. World Scientific,
1995.

[10] Javier Esparza and Mogens Nielsen. Decidability issues for petri nets - a survey.
Bulletin of the EATCS, 52:244–262, 1994.

[11] T. Gazagnaire. Scenario Languages: Using Partial Orders to Model, Verify and
Supervize Distributed and Concurrent Systems. PhD thesis, Univ. Rennes 1,
2008.

[12] T. Gazagnaire, B. Genest, L. Hélouët, P.S. Thiagarajan, and S. Yang. Causal
Message Sequence Charts. In CONCUR, pages 166–180, 2007.

[13] B. Genest, D. Kuske, and A. Muscholl. A Kleene Theorem and Model Checking
for a Class of Communicating Automata. Information and Computation.,
204(6):920–956, 2006.

[14] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-state High-level
MSCs: Model-checking and Realizability. Journal of Computer and System
Sciences, 72(4):617–647, 2006.

[15] E. Gunter, A. Muscholl, and D. Peled. Compositional Message Sequence Charts.
In Proc. of TACAS’01, number 2031 in LNCS. Springer, 2001.

30

[16] J.G. Henriksen, M. Mukund, K. Narayan Kumar, M. Sohoni, and P.S.
Thiagarajan. A Theory of Regular MSC Languages. Information and
Computation, 202(1):1–38, 2005.

[17] L. Hélouët and P. Le Maigat. Decomposition of Message Sequence Charts. In
Proc. of SAM’00, 2000.

[18] G.J. Holzmann. Design And Validation Of Computer Protocols. Prentice Hall,
1991.

[19] ITU-TS. ITU-TS Recommendation Z.120: Message Sequence Chart (MSC).
ITU-TS, 2004.

[20] D.J Kleitman and B.L Rotschild. Asymptotic enumeration of partial orders on
a finite set. Transactions of the American Mathematical Society, (205):205–220,
1975.

[21] D. Kuske. Regular sets of infinite message sequence charts. Information and
Computation, 187(1):80–109, 2003.

[22] A. Mazurkiewicz. Concurrent Program Schemes and Their Interpretation.
Aarhus University, Comp. Science Depart., DAIMI PB-78, 1977.

[23] R. Morin. Recognizable sets of Message Sequence Charts. In Proc. of STACS’02,
number 2285 in LNCS, pages 523–534. Springer, 2002.

[24] A. Muscholl and D. Peled. Message Sequence Graphs and Decision Problems
on Mazurkiewicz Traces. In Proc. of MFCS’99, number 1672 in LNCS, pages
81–91. Springer, 1999.

[25] A. Muscholl, D. Peled, and Z. Su. Deciding Properties for Message Sequence
Charts. In Proc. of FoSSaCS’98, number 1378 in LNCS, pages 226–242.
Springer, 1998.

[26] V. Pratt. Modeling Concurrency with Partial Orders. International Journal of
Parallel Programming, 15(1), 1986.

[27] M. Reniers. Message Sequence Chart: Syntax and Semantics. PhD thesis,
Eindhoven University of Technology, 1999.

[28] M. Reniers and S. Mauw. High-level Message Sequence Charts. In A. Cavalli
and A. Sarma, editors, SDL97: Time for Testing - SDL, MSC and Trends, Proc.
of the 8th SDL Forum, pages 291–306, Evry, France, Septembre 1997.

[29] RFC793. Transmission control protocol, 1981. DARPA Internet Program
Protocol Specification.

[30] E. Rudolph, P. Graubman, and J. Grabowski. Tutorial On Message Sequence
Charts. Computer Networks and ISDN Systems, 28:1629–1641, 1996.

31

	Introduction
	MSCs, causal MSCs and causal HMSCs
	Regularity and Language Inclusion for causal HMSCs
	Semantics for causal HMSCs
	Regular sets of linearizations
	Inclusion and Intersection of causal HMSC Languages

	Window-bounded causal HMSCs
	Relationship with Other Scenario Models
	A Detailed Example
	Conclusion
	References

