
OXenstored
An Efficient Hierarchical and Transactional Database using
Functional Programming with Reference Cell Comparisons

Thomas Gazagnaire Vincent Hanquez
Citrix Systems

First Floor Building 101, Cambridge Science Park, Milton Road
Cambridge, CB4 0FY, United Kingdom

{thomas.gazagnaire,vincent.hanquez}@citrix.com

Abstract
We describe in this paper our implementation of the Xenstored ser-
vice which is part of the XEN architecture. Xenstored maintains a
hierarchical and transactional database, used for storing and man-
aging configuration values.
We demonstrate in this paper that mixing functional data-structures
together with reference cell comparison, which is a limited form of
pointer comparison, is: (i) safe; and (ii) efficient. This demonstra-
tion is based, first, on an axiomatization of operations on the tree-
like structure we used to represent the Xenstored database. From
this axiomatization, we then derive an efficient algorithm for co-
alescing concurrent transactions modifying that structure. Finally,
we experimentally compare the performance of our implementa-
tion, that we called OXenstored, and theC implementation of the
Xenstored service distributed with the XEN hypervisor sources: the
results show that OXenstored is much more efficient than itsC
counterpart.
As a direct result of this work, OXenstored will be included in fu-
ture releases of XENSERVER, the virtualization product distributed
by Citrix Systems, where it will replace the current implementation
of the Xenstored service.

Categories and Subject Descriptors H.2.4 [Database Manage-
ment]: Systems – Transaction processing; D.1.1 [Programming
Techniques]: Applicative (Functional) Programming; D.3.3 [Pro-
gramming Language]: Language Constructs and Features – Data
types and structures

General Terms Algorithms, Design, Performance

Keywords Databases, Transactions, Concurrency, Prefix Trees

1. Introduction
XEN (Barham et al. 2003) is an open-source type 1 hypervisor, pro-
viding the ability to run multiple operating systems, called guests,
concurrently on a single physical processor. Type 1 (or native, bare-
metal) hypervisors are software systems that run directly on the

Permission to make digital or hard copies of all or part of this work for personalor
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

ICFP’09, August 31–September 2, 2009, Edinburgh, Scotland, UK.
Copyright c© 2009 ACM 978-1-60558-332-7/09/08. . . $5.00

host’s hardware. They have been very popular architecture since
the CP/CMS (Creasy 1981), developed at IBM in the 1960s. The
XEN hypervisor is very popular and is used, for example, by the
Amazon Elastic Compute Cloud project1 which allows customers
to rent computers on which they can run their own applications.

In a virtual architecture, each guest runs securely partitioned
from others in a virtualized environment. Using a technique called
para-virtualization, which involves modifying processors’ admin-
istrative instructions into calls into the hypervisor, processors’ ef-
ficiencies are close to native performance. When operating system
modifications are not practical or impossible, the XEN hypervisor
leverages the use of special instructions, called VMM instructions.
These instructions give the ability to run the guest unmodified but
trapping all administrative operations securely.

In the XEN architecture, a para-virtualized privileged guest
called the “control domain” is in charge of all the I/O needs of the
other guests. Consequently, all virtual guests’ devices (disks, net-
work interfaces) have to be handled at this level too. For example,
each guest’s virtual disk is associated with at least a process in the
control domain. Subsequently, when a new guest starts, it is nec-
essary that the corresponding processes have already been started
in the control domain and configured correctly. In the XEN archi-
tecture, it is thus necessary to have a specific service in the control
domain to exchange control and configuration data between guests.
This service is called Xenstored and can be seen as a tuple space
system, providing concurrent-safe access to a key-value association
database. This service has originally been implemented inC and is
distributed with the XEN hypervisor sources. We will refer to it as
CXenstored.

This paper describes another implementation of the Xensto-
red requirements, done usingObjective Caml(Leroy et al. 1996),
and we will refer to it as OXenstored. This new implementation
uses functional data-structures as well as reference cell compar-
ison (Pitts and Stark 1993; Claessen and Sands 1999), which is
a limited form of pointer comparison. OXenstored is a fifth of
the size of CXenstored (around 2000 lines of code) and signifi-
cantly improves the performance in several respects: particularly,
it increases by a factor of 3 the number of guests per host (up to
160). Moreover, we formalized the new algorithms implemented
by OXenstored and we proved that they are safe, that is concurrent
accesses always leave the database in a consistent state. Finally,

1 Part of the Amazon Web Services:http://aws.amazon.com/ec2/



as a result of this work, OXenstored will replace CXenstored in
future releases of XENSERVER, the virtualization product com-
mercialized by Citrix Systems2 which is built on top of the XEN
hypervisor. OXenstored sources can be found on:
http://xenbits.xen.org/ext/xen-ocaml-tools.hg

Consequently, we believe that these arguments demonstrate that
(i) functional (and thus immutable) data-structures are the most in-
tuitive and simple candidates for manipulating tree-like structured
data; and (ii) reference cell comparisons can be used in a very safe
way to obtain great performance as well as proven consistency.

This paper is organized as follows: Section 2 gives a high-level
overview of the Xenstored service’s architecture, as well as an
example of how it interacts with the XEN framework. Section 3
gives an informal explanation of the algorithm used by OXensto-
red. Then, Section 4 formalizes the functional data-structure used
in OXenstored for modeling the database and section 5 derives the
notion of a transaction in this context. Then, we explain in Section 6
how, unlike CXenstored, OXenstored is able to coalesce concurrent
transactions which are affecting distinct parts of the database. We
conduct some experiments in Section 7 to validate our approach
and show that, indeed, the simplistic way of handling transactions
of CXenstored can makes the system live-lock in a very common
situation (starting a lot of guests), as opposed to OXenstored. Fi-
nally, Section 8 compares our approach with other work focused
on transactional databases and Section 9 discusses the results given
in this paper.

2. Xenstored Design and Use-Case
We give in Section 2.1 an overview of the design of the Xenstored
service and, in Section 2.2, an example use-case of how it interacts
with the XEN hypervisor.

2.1 Overview of the Xenstored Design

The Xenstored service is a single-threaded daemon, running in the
control domain. It is the central point of communication, as guests
communicate to each others using it. Basically, it is a file-system-
like database, where control data is hierarchically organized.

There is two different ways a client can connect and communi-
cate with the Xenstored service:

• First, using the ring buffers. These are two circular buffers
stored inside in the guests’ memory: one for sending request
to the Xenstored service and one for reading its replies.

• Second, using the Unix sockets. These are accessible only for
processes running inside the control domain. Clients of the
Xenstored service use the standard Unix read and write oper-
ations to access to the database.

From the client point of view, the Xenstored service offers a hi-
erarchical key-value association database which has the following
properties:

Structured key databaseContents in the database are structured
into nodes which are addressed by Unix filesystem-style paths.
For example, theith guest stores its virtual-disk configuration
under the path/local/domain/i/device/vbd/ in a XEN-
based system. Each path corresponds to a node in the database
and it can store a value even if it has some children.

2 Citrix Systems,http://www.citrix.com.

Simple database operationThe clients of the Xenstored service
(which are either guests or are components running inside the
control domain) have only a small set of atomic operations to
set and get the contents from the database:

• write: create or modify a new path;

• read: get the value associated with a path;

• mkdir: create a new node in the database;

• getperm: get the permissions of a node;

• setperm: set the permissions of a node.

Notification The clients of the Xenstored service can ask to be
notified of changes in a node. When a node is changed or
created, all the guests watching this node or a parent of this
node will be notified asynchronously that a specific path has
been modified.

PermissionsEach node has its own permissions. A permission is
made up of an owner, which has all privileges on the node, and
an access control list which specifies who is allowed to access
or modify the node.

Quotas Unprivileged guests can be limited in the number of nodes
they are authorized to create. This permits the Xenstored ser-
vice’s memory usage to stay at reasonable levels and this pro-
tects the control domain memory from malicious guests.

Transactions The clients of the Xenstored service have the abil-
ity to run a set of multiple operations modifying/reading the
database in an atomic fashion. From the start to the end of the
transaction, the Xenstored service will ensure that the database
stays consistent. If a transaction cannot be made consistent, then
the Xenstored service will reply to the client that the transaction
needs to be retried. A client can have multiple opened transac-
tion at the same time, and thus each transaction needs to be
identified by a unique transaction ID – whenever a client sends
a request to the Xenstored service, it will associate to its request
such a transaction ID. A transaction ID of 0 means that the re-
quest is not associated to a transaction and will be executed
directly.

These requirements have originally been implemented in CXen-
stored. However, in CXenstored, transactions are handled in a sim-
plistic way. In a set of concurrent transactions, only one would be
able to successfully complete, all the other transactions would have
to retry from the beginning. This way of handling multiple con-
current transactions makes the mechanism really simple to provide
consistency, however it also adversely affects the performance of
the system: when the number of concurrent transactions is high, a
slow or long transaction will be disadvantaged in an environment
when only the first to finish can be completed successfully. In case
a client of the Xenstored service is doing a small and fast transac-
tion in a loop, this will cause a live-lock and some transactions of
other clients will never be able to complete.

2.2 Example Use-Case

In this section we give a small example which describes the se-
quence of steps involved when starting a new guest. This sequence
of steps involves three different clients of the Xenstored service:

• The Control domain’s Kernel (CK). The kernel of the control
domain is able to set up the virtual disk drivers and the virtual
network drivers inside the control domain, for the new guests.

• The new Guest Kernel (GK). When running, the kernel of the
guest will try to connect to its virtual disk and network drivers
which should be running inside and exported by the control
domain.



• The management Tool-Stack (TS). It is running inside the con-
trol domain and it receives direct orders from the user. Partic-
ularly, when a user wants to start a specific guest, the manage-
ment tool-stack is in charge of initiating the guest start protocol.

Starting a guest can be summarized as follows. Lines are pre-
fixed with the name of client doing the action (ie. (CK), (GK) or
(TS)). Almost all of these steps should be done atomically (ie. us-
ing transactions) in order to not pollute the configuration database
in case one of the three clients fails.

(TS) The management tool-stack queries the XEN hypervisor to cre-
ate a fresh guest. At this point, the guest is paused. The XEN hy-
pervisor responds to the management tool-stack by givingi, the
ID of the created guest. Then, the management tool-stack cre-
ates a collection of paths/local/domain/i/devices/... in
the database.

(TS) The management tool-stack notifies the control domain’s kernel
(whose guest ID is0) that it wants to set up some kernel
devices by atomically writing a collection of configuration keys
in /local/domain/0/backend/....

(CK) The control domain’s kernel is watching for modifications
on the path/local/domain/0/backend, and thus is noti-
fied by the Xenstored service that someone wants it to con-
figure new drivers inside the control domain. Once this is
done, the control domain’s kernels write some special values in
/local/domain/0/backend to notify the management tool-
stack that the devices are ready.

(TS) The management tool-stack is notified that the devices are ready
inside the control domain. It can now ask the XEN hypervisor
to really start the guest.

(GK) When the guest kernel is booting, it will read the configuration
values put in/local/domain/i/devices/... by the man-
agement tool-stack. Using these data, it will be able to config-
ure the data-path of its devices correctly, through the drivers of
the control domain’s kernel.

3. Informal Description of the Algorithm
Basically, the database of OXenstored is modeled as an immutable
prefix tree (Okasaki 1999). Each transaction is associated with a
triplet (T1, T2, p), whereT1 is the root of the database just before
the transaction starts,T2 is the current local copy of the database
with all updates made by the transaction up to that point in time,
p is the path to the node furthest from the root ofT2 whose sub-
tree contains all the updates made by the transaction up to that
point. The transaction updatesT2 by substitution and copying all
the nodes from the root ofT2 to the node where the substitution
takes place. At the end of the transaction, the system tries to com-
mit. At this point, the system checks ifT1 is still the root of the
current database. If it is, it just commits by settingT2 to be the
current database. If it is not, it checks if the subtree atp in T1 is
same as the subtree atp in the current database. If it is, it means
that no-one has yet touched the nodes touched by the transaction,
so it just commits by substituting the subtree atp in the database
by the subtree atp in T2. Otherwise, someone must have touched
the nodes touched by the transaction, and therefore the transaction
must abort to ensure serialisability (Härder and Reuter 1983).

Let us now consider a small example to see how this algorithm
works. Let us consider an initial database associating 0 toε, 5 to
a and 4 tob, and a transaction trying to associate 7 tob. This
transaction is represented by the triplet (T1, T2, b), whereT1 and
T2 are two prefix trees sharing in memory the same node associated
to the keya, as described in Figure 1. Moreover, let us assume that

T , the prefix tree described in this figure, is the state of the database
just before committing the transaction. When committing (T1, T2,
b) to T , the system observes first thatT1 andT ’s roots are not in the
same memory location. However, the subtree atb in T1 is the same
as the subtree atb in T . Thus, the new database state becomes the
prefix treeT ′ in figure 1, which is the substitution of the subtree at
b in T by the subtree atb in T2. In the next sections, we formalize
that algorithm and demonstrate that it works correctly.

T1T2 T

0 0 0

7 5 4 3

0

T
′

ab

abbaab

Figure 1. An example of how the algorithm implemented by
OXenstored works.

4. Database Representation
In this section we introduce the data structures we decided to use for
internally representing the OXenstored database, namely theprefix
trees, or simplytries (Fredkin 1960), which are efficient structures
for representing dictionaries. We only consider functional tries, ie.
data-structures whose states are not mutable: an update operation
on these structures creates a new structure and tries to share as
much data as possible with the previous one. We first give in
Section 4.1 some general definitions and properties of tries and we
explain in Section 4.2 the more precise assumptions and choices
we made for implementing a trie library inObjective Caml: this
leads to an axiomatization of the trie data-structure library on which
the following sections can rely on to prove the correctness of our
transaction-coalescing algorithm.

4.1 Basic Materials

First, let us fix a finite setK of keysand let us consider the free
monoidK⋆, ie. the set of string over alphabetK, defined as the
infinite set of (possibly empty) key sequences

S
n∈N
Kn and the

composition law, having the empty sequenceε as neutral element
and for whichuv = a1 . . . anb1 . . . bm if u = a1 . . . an and
v = b1 . . . bm; and uε = εu = u. Elements ofK⋆ are called
paths. A prefix ofu = a1 . . . an is eitherε, or a patha1 . . . ak with
k ∈ {1 . . . n}. A strict prefix ofu is eitherε or a patha1 . . . ak

with k < n. Moreover, the size of a pathu, denoted by|u|, is
the number of elements contained in the sequence; more formally,
|a1 . . . an| = n and|ε| = 0. In OXenstored, a path is represented
as a slash-separated list of names, as/local/domain/0/device.
This path can be understood as the sequence of keysa1a2a3a4,
wherea1 = local, a2 = domain, a3 = 0 anda4 = device.

Second, let us fix a finite setV of values. A trie is a structure
which partially maps paths to values. Thus, it can also be consid-
ered as a total functionT : K⋆ → (V ∪{⊥}), where⊥ is a special
symbol introduced to denote the fact that a path has no associated
value.



Finally, the singleton trie associating a valuex with the pathε
and⊥ to anything else is denoted by{x}. The infinite collection of
tries is denoted byT(K,V) or simply byT.

Tree Representation In practice, this hierarchical mapping can
be used to optimize space utilization of a trie: indeed, it can then
be implemented as a finite tree whose nodes and edges are labelled
by values and keys respectively. Such a treeT can be decomposed
into a structure〈x, {ai, Ti}i∈I〉, wherex ∈ V, I = {1 . . . n} and
for anyi ∈ I, ai ∈ K andTi ∈ T such that:

• T (ε) = x;

• For anyu = bv ∈ K⋆ such thatb ∈ K, v ∈ K⋆, we have:

If T (b) = ⊥ then there is noi such thatai = b;

OtherwiseT (u) = Ti(v) wherei is such thatai = b.

Thus, for any pathu in K⋆ the value associated withu in T is
eitherT (u) ∈ V if there is a node associated with the pathu in
the tree representingT , or T (u) = ⊥ otherwise. Figure 3 shows
such a trieT : paths/vm/0, /vm/1 and/vm/2 share the same prefix
/vm and thus the valuesT (/vm/0), T (/vm/1) andT (/vm/2) are
stored in the same subtree at/vm in T . For this trie, we also have
T (/vm/3) = ⊥.

We are now ready to define basic operations on tries. We con-
sider in this paper two operations, namely the substitution and re-
striction.

Substitution First, thesubstitutionoperation consists to replace
any subtree of the original trie by another subtree. More formally,
the trie substitution can be defined as follows: given two triesT1

and T2 in T and a pathu in K⋆, the substitution ofT1 on path
u by T2, denoted byT1[u/T2], is a new trie such that, for any
pathv andw in K⋆, we haveT1[u/T2](uw) = T2(w) and if u
is not a prefix ofv, thenT1[u/T2](v) = T1(v). We can also extend
these notations to defineT [u/x] whereT ∈ T can be decomposed
into 〈y, {ai, Ti}〉, u ∈ K⋆ and x ∈ V, to be the substitution
T [u/〈x, {ai, Ti}〉].

Restriction Second, therestriction operation selects a specific
subtree in the initial tree: given a trieT in T and a pathu in K⋆,
therestrictionof T to u, denoted byT |u, is a trie such that, for any
pathv inK⋆, (T |u)(v) = T (uv). The trieT |u is also called a sub-
trie of T . The restriction operation might also be seen as apartial
applicationon tries. Figure 3 shows an example of trie restrictions:
the trie whose nodes are labeled byb, d, e andf is a sub-trie ofT ,
obtained its restriction to the path/vm, ie. it isT |/vm.

4.2 Axiomatization using Reference Cell Equality

When the question of implementing the substitution and restric-
tion operators defined above in an efficient trie library arises, the
programmer still has a lot of freedom: the given definitions do
not explain directly how to express the substitution and restriction
in terms of tree operations. Indeed, the above definitions hold for
path/value associations only and nothing is said about the location
of these values. In particular, nothing is specified about subtree
sharing. However, every modern compiler of functional languages,
such asObjective Caml(Leroy et al. 1996) or Scheme (Serrano
2000), enforces that multiple copies of an immutable structures
share the same location in memory. is possible to design a trie li-
brary which enforces the sharing of subtrees as much as possible.
In order to define more formally the notion of sharing, therefer-
ence cell equality(Pitts and Stark 1993; Claessen and Sands 1999),
denoted by≡, has been introduced. This equality, also known as
physical equality, is a limited form of pointer equality. It compares
the location of values instead of the values themselves and thus can

be used to observe value sharing: two values are shared if they have
the same location, that is, if they are physically equal.

In light of this discussion, Figure 2 redefines the substitution and
the restriction in order to enforce the sharing of values: rules (E1)
and (E2) focus on the behavior of physical equality only; rules (S1),
(S2), (S3) and (S4) focus on the substitution operator and its inter-
actions with the restriction operator; finally, rules (R1), (R2) and
(R3) focus on the restriction operator only. These definitions can
be considered as axioms that any implementation of tries should
satisfy and for which any formal reasoning can rely on.

(E1) ∀T ∈ T, T ≡ T

(E2) ∀T1, T2 ∈ T and∀u, v ∈ K⋆,
if T1|u ≡ T2|v, thenT1(u) = T2(v)

(S1) ∀T1, T2 ∈ T and∀u, v ∈ K⋆, T1[u/T2]|uv ≡ T2|v

(S2) ∀T1, T2 ∈ T and∀u, v ∈ K⋆, T1[uv/T2]|u 6≡ T1|u

(S3) ∀T1, T2 ∈ T and∀u, v ∈ K⋆, if:
⊲ u is not a prefix ofv and
⊲ v is not a prefix ofu

thenT1[v/T2]|u ≡ T1|u

(S4) ∀T1, T2 ∈ T and∀u, v ∈ K⋆,
if v 6= ε, thenT1[uv/T2](u) = T1(u)

(R1) ∀T ∈ T, T |ε ≡ T

(R2) ∀T ∈ T and∀u, v ∈ K⋆, T |u|v ≡ T |uv

(R3) ∀T1, T2 ∈ T and∀u ∈ K⋆,
if T1 ≡ T2, thenT1|u ≡ T2|u

Figure 2. Axiomatization of the reference cell equality on tries,
with respect to substitution and restriction operations.

Physical Equality More informally, first of all, the two first rules
are related to the reference cell equality behavior only. Rule (E1)
states that a given symbol always physically represents the same
trie and rule (E2) states that reference cell equality implies usual
structural equality: if the reference cells of two tries are identical,
then they also associate the same values to the same keys.

Substitution Second, the next four rules are related to the sub-
stitution operator and its interactions with the restriction one. Rule
(S1) states that sub-tries of a substituted trie are physically equiv-
alent to sub-tries of the newly inserted trie. Rule (S2) states that
nodes which are on the path of the substitution are never physi-
cally equivalent to the respective nodes in the initial trie: they cor-
respond to newly allocated reference cells. Rule (S3) states that
nodes which are not related to the substitution are not modified, ie.
substitution is a local operation which enforces node sharing be-
tween tries produced by substitution. Finally, rule (S4) states that
even though (S2) states that nodes which are on the path are newly
allocated, the value they contain is preserved and is still equal to
the value of the initial trie.

Restriction Finally, the last rules are related to the restriction
operator. Rule (R1) states that the restriction of any trie to an
empty path is the trie itself. Rule (R2) states that it is (physically)



equivalent to restrict a trie twice with two given path that to restrict
a trie by the composition of these two paths. Finally, rule (R3) states
that if two tries are physically equal, then their restriction to the
same path are also physically equal.

Tree Representation The tree representation introduced in Sec-
tion 4.1 can be then reformulated using the axioms of Figure 2
to be the following: a treeT can be decomposed into a structure
〈x, {ai, Ti}i∈I〉, whereI = {1 . . . n}, x ∈ V and for anyi ∈ I,
ai ∈ K andTi ∈ T such that:

• T (ε) = x;

• There is noai such thatT (ai) = ⊥;

• T |ai ≡ Ti.

In this case, rule (R2) ensures that for anyu ∈ K⋆, T |aiu ≡
T |ai|u, that is T |aiu ≡ Ti|u. Finally rule (E2) ensures that
T (aiu) = Ti(u).

For example, Figure 3 gives the graphical representation of a
trie T , which can be decomposed as follows:

〈a, {(vm, 〈b, {(0, 〈d, ∅〉), (1, 〈e, ∅〉), (2, 〈f, ∅〉)}), (vss, 〈c, ∅〉)}〉

T

a

b c

d e f

210

vssvm

Figure 3. Example of a tree representation.

In this Figure, the values associated with the paths/vm and
/vm/1 areb ande respectively andT |vm designates the sub-tree
whose root is labeled byb.

5. Transactions
We stated that the Xenstored database can be represented as an im-
mutable trie; this database can then be updated using the trie sub-
stitution operator as follows: if the trieT ∈ T is the current state of
the database, then replacing the value associated withu ∈ K⋆ by
x ∈ V is done by replacing the current state of the database by the
trie T [u/x]. However, Xenstored is atransactionaldatabase. That
is, it is possible to ask for any sequences of access and modification
to be done atomically.

First of all, in order to simplify the following definitions and re-
sults, we consider any reading operation as an identity substitution:
for any trieT in T and pathu in K⋆, gettingT (u) does not modify
T but when considering sequences of read/update operations it is
necessary to remember thatu had been read. So in this case, we
write T [u/(T |u)] as rule (S2) of Figure 2 states that in this case
T 6≡ T [u/(T |u)]. However, it is possible to extend the definitions
and results we present in this paper to reading operations which do
not update the database state.

We can now define transactions:

Definition 5.1 (transaction). A transaction is a sequence of substi-
tutions. That is, a transactionσ belongs to(K⋆ × T)⋆, ie. either
σ is the empty sequenceε or σ = [u1/T1] . . . [un/Tn], where for
anyi ∈ {1 . . . n}, ui ∈ K

⋆ andTi ∈ T.

Such a sequence can be applied to an initial trieT ∈ T in order
to obtain a new trieT ′ ∈ T, which is denoted byT

σ
−→ T ′. This

application consists of sequential application of each substitution
[ui/Ti] for i from 1 to n, that is:

T ′ = ((. . . (T [u1/T1]) . . .) [un/Tn])

For example, let us consider the following transaction:

1. Writex ∈ V in the pathu1 ∈ K
⋆;

2. Read the value associated with the pathu2 ∈ K
⋆;

3. Writey ∈ V in the pathu3 ∈ K
⋆.

Let us have the trieT ∈ T representing the current state of the
database. Then the above transaction can be defined as:

σ = [u1/(T1|u1)][u2/(T2|u2)][u3/(T3|u3)]

whereT1 is T [u1/x], T2 is T1[u2/T1(u2)] and T3 is T2[u3/y].
Finally, T ′, the updated state of the database is such thatT

σ
−→ T ′.

Furthermore, the Xenstored requirements are that transactions
can proceed concurrently. That is, multiple connections to the
database can be opened and all of them can start independent trans-
actions. As we consider immutable data-structures, this is not a
problem: for each transaction started, the initial database is copied
efficiently (as it is sufficient to copy only the location of the trie
root, which is done inO(1)) and then modifications done by a
transaction are applied directly to their own copy of the initial
database.

However, ending (or “committing”) a transaction is more com-
plex. Indeed, the initial database might have been modified, since
concurrent transactions or non-transactional events may have up-
dated its state. It is thus necessary to carefully design what happens
when a transaction ends.

First of all, Figure 4 describes the general algorithm which one
has to solve when committing a transaction.

COMMIT ALGORITHM

Input :

• A trie T1 ∈ T

(the initial database state)
• A modification sequenceσt ∈ (K⋆ × T)⋆

(the transaction)
• A modification sequenceσ1 ∈ (K⋆ × T)⋆

(the concurrent modifications)

Output :

• A modification sequenceσ2 ∈ (K⋆ × T)⋆

(the consistent merging ofσ1 andσt)
• A valuer ∈ {abort, commit}

(the result of the merging)

Figure 4. The general commit algorithm.

Figure 5 illustrates this situation. In this figure, the trieT1 is the
initial state of the database, ie. its state just before the transaction



starts; the trieTt is the state of the database copy associated with the
transaction, ie. is obtained by applying the transactionσt to T1; the
trie T2 is the state of the database which might have been updated
since the beginning of the transaction (σ1 is empty if nothing has
been executed concurrently withσt); furthermore, the trieT3 is the
state of the database after the modifications caused byσt have been
taken into account to updateT2 accordingly; finally, the dashed
lines betweenTt andT3 illustrates that this process is asymmetric:
theTi tries, fori ∈ {1, 2, 3}, are associated with visible states of
the database, asTt is an internal copy which carry modification
information only. Thus, in case it is not possible to mergeTt with
T2, it is safe to completely discard the changes introduced byσt,
that is to returnσ2 = ε andr = abort, to obtainT3 ≡ T2.

σ1

σ2T1 T2

Tt

T3

Figure 5. Relationship between tries used in the commit algo-
rithm. Time goes from left to right.

Thus, there exist very simple algorithms which are able to merge
changes introduced by transactions into the visible database state:
the first one is the one which never commits anything, that is which
always returnsσ2 = ε andr = abort. This behavior is correct,
however it is not very useful in practice. Furthermore, CXenstored
implements an algorithm which commits the changes only ifT1 has
not been updated since the transaction has been started, ie. if and
only if T1 ≡ T2. Otherwise, the transaction is aborted and retried
after a short delay from the beginning. The hope is that nobody
will update the database concurrently this time. In this case,T3 is
very simple to compute, as it is exactlyTt when the transaction
is committed andT2 otherwise. In practice, this simple algorithm
is sufficient when transactions do not occur too often and it was
implemented successfully by CXenstored. However, experiments
show that in cases where the system is under load, this simple al-
gorithm doesn’t work any more as the transaction abort-and-retry
mechanism live-locks (see Section 7). Thus we designed a better
algorithm, able tomerge (or coalesce) concurrent transactionsand
implemented it in OXenstored.

Regarding the the context of utilization of Xenstored, it is im-
portant to remark that transactions are localized and are closely
related to the hierarchical structure of the database. Indeed, each
guest has its own configuration values and the transactions it will
create will access and modify only these values (and for security
reasons, we do not want it to access or modify configuration values
of other guests). For guests whose ID isi these configuration values
are stored in specific sub-tries of/local/domain/i. Then access-
ing information about disk or network configuration can be done
in accessing only the sub-tries./device/vbd and./device/vif
respectively: it is then not necessary to block other transactions
accessing different sub-tries to commit. In the following, we use
that remark to coalesce concurrent transactions accessing distinct
sub-tries of the database.

However, it is important to remember that we are still in a
transactional model, that is some transactions will still eventually
fail. So, there are still some corner-cases when, under load, the
system will live-lock. However, in practice, Xenstored transactions
often have a very specific shape (they are localized on some sub-
tries) and thus the algorithm we give in the next section corrects
this behavior and leads to more stable performance.

6. Transaction Coalescing
In the previous section, we defined transactions in terms of se-
quences of trie modifications. We explain in this section how to
merge these transactions with the main state of the database. In
order to properly explain how the coalescing algorithm we im-
plemented in OXenstored works, we first introduce in Section 6.1
some basic definitions useful for dealing with trie modifications. In
Section 6.2, we explain how optimizing a part of the coalescing al-
gorithm, by incrementally updating what we will call the modifica-
tion prefix of the transaction. Finally, we give the main OXenstored
algorithm in Section 6.3 as well as its complexity in Section 6.4.

6.1 Main Results

The first of these definitions is about comparing the modifications
done on two tries. More precisely, it is about locating the longest
path which address sub-tries that are not physically equal in the
two given tries. This longest path is called themodification prefix
and can be more formally defined as the following:

Definition 6.1 (modification prefix). Let T1 and Tt be two tries.
Themodification prefixof T1 andTt, denoted byπ(T1, Tt), is an
elementu in ({⊤} ∪ K⋆) such that:

• If T1 ≡ Tt thenu = ⊤;
• Otherwise,u is the longest path such that, for anyv ∈ K⋆:

If v is a strict prefix ofu, thenT1(v) = Tt(v);
If v is a prefix ofu, thenT1|v 6≡ Tt|v;
If T1|v 6≡ Tt|v then eitheru is a prefix ofv or v is a prefix
of u.

Hence,π(T1, Tt) is the longest path such thatTt|π(T1, Tt) is
not a sub-trie ofT1 (and conversely, it the longest path such that
T1|π(T1, Tt) is not a sub-trie ofTt). Moreover, let us remark that
in caseT1(ε) 6= Tt(ε), thenπ(T1, Tt) = ε, as there is no strict
prefix of ε and any path hasε as prefix; moreover (E2) and (R1)
state thatT1(ε) 6= Tt(ε) implies thatT1 6≡ Tt. Furthermore, let
us consider the trieT of Figure 5 and let us consider a new trie
Tt obtained by applying the transaction[uv/x][uw/y] to T , where
x, y ∈ V. In this case, one can check thatπ(T, Tt) is exactlyu.

The second of these definitions is about merging tries while
enforcing a sub-trie sharing policy as much as possible. In order
to understand the intuition of this definition, it is useful to consider
the diagram shown in Figure 5. However, the following definition
is more general and holds for any 3-tuple of tries:

Definition 6.2 (coalescing trie). Let T1, T2 andTt be three tries.
The trieT3 is a coalescing trieof T2 andTt, relative toT1, if, for
any pathv in K⋆, it satisfies the following conditions:

1. If T1|v ≡ Tt|v, thenT3|v ≡ T2|v;
2. If v is not a strict prefix ofπ(T1, Tt) and T1|v ≡ T2|v, then

T3|v ≡ Tt|v;
3. In all cases, eitherT3(v) = Tt(v) or T3(v) = T2(v).

We are now ready to introduce the main result of this paper.
The following theorem states how to compute the coalescing trie
of three tries organized as in the diagram of Figure 5, ie. with an
initial trie T1 representing the initial state of the database, from
which two distinct modification sequences lead to the two triesT2

(the database’s current state) andTt (the local state associated with
the current transaction). Basically, in the majority of cases, it is
sufficient to substitute the database’s current state by the sub-trie
of Tt addressed by the modification prefix ofT1 andTt. However,
this theorem is not complete, that is there are some cases where



building this coalesced trie is not possible. In this case, we can
simply considerTt as a trie related to a transaction andT2 as the
current state of the database, and as already discussed, in practice it
is acceptable to discard the transaction trieTt and let the database
client retry the sequence of modifications.

Theorem 6.3(coalescing tries). Let T1, T2 and Tt be three tries
andσt be a transaction such thatT1

σt−→ Tt. If π(T1, Tt) 6= ⊤ and
T1|π(T1, Tt) ≡ T2|π(T1, Tt), then the coalescing trie ofT2 and
Tt, relative toT1, is:

T2

ˆ
π(T1, Tt) / (Tt|π(T1, Tt))

˜

Proof. Let us fix u = π(T1, Tt). We assume thatu 6= ⊤ and
thus we can fixT3 to beT2[u/(Tt|u)]. Now, we want to check that
the three assertions of Definition 6.2 holds forT3.

Before starting the core of the proof, let us show a useful result.
From the definition ofT3, we have:

T3|u ≡ T2[u/(Tt|u)]|u (using (R3))
≡ (Tt|u)|ε (using (S1))
≡ Tt|u (using (R2))

Thus, we can fix, within the scope of this proof, the following as-
sumptions:

(A1) T3 ≡ T2[u/(Tt|u)]
(A2) T1|u ≡ T2|u
(A3) T3|u ≡ Tt|u

We are now ready to prove Theorem 6.3.v, w are inK⋆.

1. Following the structure of Definition 6.2, we first need to prove
thatT1|v ≡ Tt|v implies thatT3|v ≡ T2|v. To do this, let us
consider the following three possible cases: (a)v is a prefix of
u; (b) u is a prefix ofv and (c) neitheru is a prefix ofv norv is
a prefix ofu.

(a) If u = vw:
T1|v ≡ Tt|v ⇒ (T1|v)|w ≡ (Tt|v)|w (using (R3))

⇒ T1|u ≡ Tt|u (using (R2))

However, asu is a valid prefix ofu, Definition 6.1 states
thatT1|u 6≡ Tt|u. Contradiction.

(b) If v = uw:
Using (A1), we haveT3 ≡ T2[u/(Tt|u)]. Then, we have:

T3|v ≡ T2[u/(Tt|u)]|uw (using (R3))
≡ (Tt|u)|w (using (S1))
≡ Tt|v (using (R2))

Thus,T1|v ≡ Tt|v implies thatT1|v ≡ T3|v.

Then, let us develop (A2):
T1|u ≡ T2|u ⇒ (T1|u)|w ≡ (T2|u)|w (using (R3))

⇒ T1|v ≡ T2|v (using (R2))

Thus,T1|v ≡ Tt|v implies thatT3|v ≡ T2|v.

(c) If neitheru is a prefix ofv norv is a prefix ofu:
Let us start from (A1):
T3|v ≡ T2[u/(Tt|u)]|v (using (A1))

≡ T2|v (using (S3))

Thus, we showed that, in every case,T1|v ≡ Tt|v implies that
T3|v ≡ T2|v.

2. Second, let us prove that ifv is not a prefix ofu andT1|v ≡
T2|v, thenT3|v ≡ Tt|v. To do this, let us consider the following
two possible cases: (a)u is a prefix ofv and (b) neitheru is a
prefix ofv norv is a prefix ofu.

(a) If v = uw:
Let us start from (A3):
T3|u ≡ Tt|u ⇒ (T3|u)|w ≡ (Tt|u)|w (using (R3))

⇒ T3|v ≡ Tt|v (using (R2))

(b) If neitheru is a prefix ofv norv is a prefix ofu:
Using Definition 6.1, we haveT1|v ≡ Tt|v.

Then, we start from (A1) to obtain:
T3|v ≡ T2[u/(Tt|u)]|v (using (R3))

≡ T2|v (using (S3))

Thus, ifT1|v ≡ T2|v, thenT3|v ≡ T1|v and thus,T3|v ≡
Tt|v.

Thus, we showed that, in every case, ifv is not a prefix ofu and
T1|v ≡ T2|v, thenT3|v ≡ Tt|v.

3. Finally, let us prove that all cases,T3(v) = Tt(v) or T3(v) =
T2(v). To do this, let us consider the following three possible
cases: (a)v is a prefix ofu; (b) u is a prefix ofv and (c) neither
u is a prefix ofv norv is a prefix ofu.

(a) If u = vw:
(A3) states thatT3|v ≡ T2[u/(Tt|u)]|v. Then using (S4),
we obtain thatT3(v) = T1(v).

(b) If v = uw:
Let us start from (A3):
T3|v ≡ T2[u/(Tt|u)]|v ⇒ T3|v ≡ Tt|v (S3)

⇒ T3(v) = Tt(v) (E2)

(c) If neitheru is a prefix ofv norv is a prefix ofu:
Let us start from (A3):
T3|v ≡ T2[u/(Tt|u)]|v ⇒ T3|v ≡ T2|v (S3)

⇒ T3(v) = T2(v) (E2)

Hence, for all cases, we showed that eitherT3(v) = Tt(v) or
T3(v) = T2(v). �

6.2 Computing the Modification Prefix

In the last section, we explained how to properly coalesce trans-
actions: it suffices to substitute the database’s current state by the
transaction state on the modification prefix of the transaction trie
and initial database state. However, computing the modification
prefix of two tries can be costly if we do not have additional infor-
mation. Fortunately, the modification sequence of the transaction
can be used to efficiently compute that modification prefix:

Lemma 6.4. T1 andTt are two tries andσt = [u1/ bT1] . . . [un/ bTn]

be a non-empty transaction such thatT1

σt−→ Tt. Thenπ(T1, Tt),
the modification prefix ofT1 and Tt, is exactly the longest path
which is a common prefix of everyui, for i ∈ {1 . . . n}.

Proof. Let us prove Lemma 6.4 by induction on the size ofσt.

(i) Let us show the first induction step. Let us fixσt = [u1/ bT1],
that is, Tt ≡ T1[u1/ bT1] and let us prove that the longest
common prefix ofu1 is the modification prefix ofT1 andTt,
that isu1 = π(T1, Tt). According to Definition 6.1, we have to
show three implications:
• First, we have to prove that, for anyv ∈ K⋆, if v is a strict

prefix of u1, then T1(v) = Tt(v): if v is a strict prefix
of u1, that isu1 = vw with w 6= ε, then (S4) states that
T1[u1/ bT1](v) = T1(v), that isTt(v) = T1(v);

• Second, we have to prove that, for anyv ∈ K⋆, if v is a
prefix ofu1, thenT1|v 6≡ Tt|v: if v is a prefix ofu1, that is
u1 = vw, then (S2) states thatT1[u1/ bT1]|v 6≡ T1|v, that is
Tt|v 6≡ T1|v;



• Finally, we have to prove that, for anyv ∈ K⋆, if T1|v 6≡
Tt|v, then eitheru1 is a prefix ofv or v is a prefix ofu1: if
T1|v 6≡ Tt|v, that isT1|v 6≡ T1[u1/ bT1]|v, then (S3) states
that eitheru is a prefix ofv or v is a prefix ofu.

(ii) Let us then complete the induction process. Let us fixσt =
σ[un/ bTn], with σ a non-empty transaction of sizen−1 and let
us consider the trieT such thatT1

σ
−→ T . Let us then have

π = π(T1, T ). The induction hypothesis gives us thatπ is
also the longest common prefix of{u1, . . . , un−1}. Hence, for
everyv ∈ K⋆:

(a) If v is a strict prefix ofπ, thenT1(v) = T (v);
(b) If v is a prefix ofπ thenT1|v ≡ T |v;
(c) If T1|v ≡ T |v then eitherv is a prefix ofπ or π is a prefix

of v.

Let u be the longest common prefix of{u1, . . . , un} and let us
show thatu is also the modification prefix ofT1 andT [un/ bTn].
According to Definition 6.1, we have to show three implica-
tions:

• First, we have to prove that, for anyv ∈ K⋆, if v is a strict
prefix of u, thenT1(v) = Tt(v): if v is a strict prefix ofu,
we haveu = vw with w 6= ε, and thus we haveun = vw
with w 6= ε. Then (S4) states thatT [un/ bTn](v) = T (v).
Using (a), we obtain thatTt(v) = T1(v), with v being the
longest common prefix of{u1, . . . , un};

• Second, we have to prove that, for anyv ∈ K⋆, if v is a
prefix ofu, thenT1|v ≡ Tt|v: if v is a prefix ofu, we have
u = vw, for w ∈ K⋆, thus we haveun = vw. We can then
use (S2) to obtain thatT [un/ bTn]|v 6≡ T1|v. Using (b), we
obtain thatTt|v ≡ T1|v, with v being the longest common
prefix of{u1, . . . , un};

• Finally, we have to prove that, for anyv ∈ K⋆, if T1|v 6≡
Tt|v, then eitheru is a prefix ofv or v is a prefix ofu:
if T1|v 6≡ Tt|v then it is due either toT1|v 6≡ T |v or to
T |v 6≡ Tt. In the first case, (c) states that eitherv is a prefix
of π or π is a prefix ofv; in the second one (S3) states that
eitherv is a prefix ofun or un is a prefix ofv. Thus, ifp is
the longest common prefix ofπ andun, that is the longest
common prefix of{u1, . . . , un}, then we have eitherv is a
prefix ofp or p is a prefix ofv;

Thus we showed that Lemma 6.4 is valid for any size ofσt.

It is then straightforward to derive from Lemma 6.4 an incre-
mental algorithm to compute the modification prefix of tries asso-
ciated with a transaction: indeed, at each step of the sequence, it
suffices to take the longest common prefix between the path cur-
rently modified by the current step and the modification prefix al-
ready computed from the beginning of the transaction.

6.3 Algorithms

OXenstored is able to properlycoalesceunrelated transactions, ie.
transactions which modify disjoint subtrees of the current store.
To do this efficiently, it exploits the functional tree representa-
tion of the database. More precisely, consider a transactionσ =
[u1/T1] . . . [un/Tn]. This transaction is executed incrementally so
we can also consider a sequence of timetk, for k ∈ {0 . . . n},
wheret0 corresponds to a time just before the transaction starts, ie.
to the sub-sequenceσ0 = ε of σ and eachtk corresponds to a time
when only the sub-sequenceσk = [u1/T1] . . . [uk/Tk] of σ has
been executed. We can now define, for anyk ∈ {0 . . . n}, the state
of a transaction at the timetk as a structure〈T k, T k

t , πk〉, where:

• T k ∈ T is a snapshot of the state of the database just before the
transaction started.

• T k

t ∈ T is a local trie attached to the transaction and where
the modification it contains are done, while letting the main
database state unchanged until the transaction is committed. Its
value is such thatT 0 σk−−→ T k

t ;

• πk ∈ ({⊤} ∪ K⋆) is either⊤ if no modifications yet been
executed (ie.k = 0) or u if u the modification prefix associated
with T k andT k

t (ie. π(T k, T k

t )), that is, it is the longest such
thatT k

t |π
k is not a sub-trie ofT k.

As already stated in Section 2.1, OXenstored gives a unique
identifier to each started transaction. This identifier is created when
a client sends to OXenstored a starting request for a new trans-
action; this identifier is associated internally with the structure
〈T, T,⊤〉, whereT is the current state of the database. This iden-
tifier is also sent back to the client; the client can then put this
identifier in the header of packets it will send later in order to up-
date the state of this specific transaction. Eventually, it can also
notify OXenstored that it wants the transaction to commit, ie. to
push the changes introduced by the transaction into the current
state of the database.

In the following, we give the algorithms used by OXenstored to
update the structure associated with a transaction and to commit the
changes induced by a transaction into the current database state. We
assume here that (i) a client already started a transactionσk, whose
associated structure is〈T k, T k

t , πk〉; (ii) the client has been sending
the requests to either update or commit a transaction; and (iii)
OXenstored has already decoded the packet header of that request
and the associated transaction structure is exactly〈T k, T k

t , πk〉.

Updating a Transaction First of all, let us detail how to update
the structure associated with a transaction. Let us assume that
OXenstored decoded the packet content and found that the clients
want to substitute the trieTk+1 on pathuk+1. OXenstored has to
compute the new transaction structure〈T k+1, T k+1

t , πk+1〉. We
have:

• For anyk ∈ {1 . . . n}, T k is identical, as it is a snapshot of the
state just before the beginning of the transaction;

• Definition 5.1 states that a transaction is updated by applying to
its local state the substitution[uk+1/Tk+1];

• Lemma 6.4 shows that the modification prefix can be com-
puted online: indeed it is sufficient to compute incrementally
the longest prefix ofπk anduk+1.

Input : 〈T k, T k

t , πk〉 and the substitution[uk+1/Tk+1]

Output : the new transaction structure〈T k+1, T k+1
t , πk+1〉

T k+1 ← T k;
T k+1

t ← T k

t [uk+1/Tk+1];
πk+1 ← longest-common-prefix(πk, uk+1);

return 〈T k+1, T k+1
t , πk+1〉

Algorithm 1 : Updating a transaction.

These lead directly to Algorithm 1, that explains how to com-
pute 〈T k+1, T k+1

t , πk+1〉 from 〈T k, T k

t , πk〉 and [uk+1/Tk+1],
for any k ∈ {1 . . . (k − 1)}. Note that this algorithm uses the
functionlongest-common-prefix(u,v)which returns either the
longest common prefix ofu and v if u, v ∈ K⋆ or returnsv if
u = ⊤ (andu if v = ⊤).



Committing a Transaction Second, let us detail how to commit
the structure associated with a transaction into the current state
of the database, in coalescing concurrent transactions when pos-
sible. Let us assume that OXenstored decoded a packet whose
header contains an identifier internally associated with the structure
〈T k, T k

t , πk〉 and whose content contains a commit order. OXen-
stored has to compute the new state of the database, which should
share, as much as possible, nodes from the current database stateT
and from the transaction local stateT k

t ; more precisely, we want to
ensure that this new database state is exactly the coalescing trie of
T andT k

t , relative toT k (see Definition 6.2). Basically, there are
three cases:

• The first case is when no modifications are done concurrently
with the current transaction on the entire database. This case
can be checked easily. Indeed, rule (S2) states that, in case a
substitution is done on betweenT and T k, then there exists
u ∈ K⋆ such thatT |u 6≡ T k. Finally, rule (R3) states that
T 6≡ T k. When this case is detected, it is then safe to replace
the database’s current state by the local state of the transaction.

• The second case is when no modifications are done concur-
rently with the current transaction on the sub-trie corresponding
to the scope of that transaction. Being able to detect this case
efficiently is the main improvement from CXenstored to OXen-
stored. However, in our settings, this is relatively easy. Indeed,
Definition 6.1 states thatπk is the longest path such thatT k

t |π is
not a sub-trie ofT k, that isT k

t |π is the biggest sub-trie modified
by the current transaction. Thus, to detect if no modifications
are done concurrently with the current transaction, it suffices to
check that the corresponding sub-trie in the database’s current
state has not been modified, ie. thatTt|π ≡ T k

t |π (as stated
by rules (S2) and (R3), as in the last bullet). When this case is
detected, Theorem 6.3 states it is safe to replace the sub-trie of
the database’s current state by the corresponding sub-trie of the
transaction’s local state.

• The last case relates to aborting the transaction if it is not
possible to commit it. In this case, the database’s current state
remains unchanged and the client is notified that it has to retry
the transaction.

These lead to Algorithm 2.

Input : the current database stateT and〈T k, T k

t , πk〉
Output : the new database state and the transaction status

if T ≡ T k then
/* if the database has not been updated */

return (T k

t , commit);
else ifT |πk ≡ T k|πk then

/* if the sub-trie has not been updated */

T ′ ← T [πk/(T k

t |π
k)];

return (T ′, commit);
else

/* otherwise, abort */
return (T , abort);

end

Algorithm 2 : Committing a transaction.

Extension In the extended version of our implementation, where
we do not consider that reading operations update the state of the
database, the algorithm remains more or less the same. However,
instead of keeping a unique modification prefixπk for each trans-
action, we keep two of them: one for read operations,πk

R, and for

one write operations,πk

W . Then, for deciding if the sub-trie of the
transaction have been concurrently updated in the database’s cur-
rent state, we check thatT |πk

R ≡ T k|πk

R andT |πk

W ≡ T k|πk

W

stands. If this is the case, we only update the sub-trie corresponding
to writing operations, ie. we setT ′ ← T [πk

W ]/(T k

t |π
k). This could

be helpful to reduce the conflict rate between concurrent transac-
tions which read and write in distinct sub-tries and dramatically
increase the efficiency of the coalescing in case a transaction only
performs read operations.

6.4 Complexity

In order to find the complexities of the algorithms, we can first
derive the complexity of the trie operations from the axioms of
Figure 2 and the tree representation detailed in Section 4.2.

First of all, using the tree representation of tries and assum-
ing a linear complexity for accessing children of a node it is then
straightforward to obtain that, given triesT, T ′ ∈ T(K,V) and
a pathu ∈ K⋆, the complexity of computing the restrictionT |u
and the substitutionT [u/T ′] is O(|u||K|) (thus, independent of
the size ofT or of T ′). Moreover, the complexity of computing the
physical equalityT ≡ T ′ is in O(1).

Thus, the complexity of Algorithm 1 is inO(|uk+1||K|), where
|uk| is the size of the path which is modified and the complexity
of Algorithm 2 is in O(|πk||K|), where |πk| is the size of the
longest common prefix of any path which are modified. Thus,
the complexity of these algorithms does not depend at all of the
size of the current database, which gives very stable performance.
Moreover, in practice, the number of keysK and the path size are
very rarely over 10, which can already lead to databases with1010

entries, while keeping a good level of efficiency for modification
operations.

7. Evaluation
In the previous sections, we explained how the OXenstored al-
gorithm for coalescing transactions works and we argued that,
although transactions can still be aborted, the rate of committed
transactions in a practice should be very high. In this section, we
validate this statement experimentally, by comparing the perfor-
mance of CXenstored and OXenstored. Not surprisingly, the results
we obtained show that OXenstored scales much better than CXen-
stored: indeed CXenstored exhibits a live-lock in a very common
situation (sequentially starting as many guests as possible), unlike
OXenstored.

More precisely, the tests we ran are the following: first in Sec-
tion 7.1, we measured the performance under load of CXenstored
and OXenstored in an isolated context, by creating random trans-
actions and without interacting with the XEN hypervisor. Then, we
measured the performance of CXenstored and OXenstored when
they are interacting with the XEN hypervisor, with and without
load, in Section 7.2 and Section 7.3 respectively.

7.1 Performance under Load

Experiment Description We first wanted to test the transaction
time latency mechanism, on a few workloads, with no interaction
with the XEN hypervisor. We wanted to simulate the behavior of
starting a guest, as described in Section 2. So, we created 128
processes, each simulating the behavior of a guest and performing
the following transaction:

• They all read the value of the same path in the database; and

• They all write in different parts of the database.



Furthermore, we repeated that transaction 500 times on each pro-
cess. Then, on each process, we measured the time taken by each
transaction to commit and we ordered the results.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  20  40  60  80  100  120  140

D
ur

at
io

n 
(in

 s
ec

on
ds

)

Process Name

CXenstored
OXenstored

(a) minimum delays

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0  20  40  60  80  100  120  140

D
ur

at
io

n 
(in

 s
ec

on
ds

)

Process Name

CXenstored
OXenstored

(b) average delays

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0  20  40  60  80  100  120  140

D
ur

at
io

n 
(in

 s
ec

on
ds

)

Process Name

CXenstored
OXenstored

(c) maximum delays

Figure 6. Comparison between CXenstored and OXenstored for
the time taken by 128 concurrent processes to to commit 500
transactions which read from the same path and write on different
ones. Processes are ordered following their completion time.

Experiment Results Part of the results of this experiment are
shown in Figure 6. More precisely, these figures show for each
process the time taken by:

(a) The fastest transaction to commit;

(b) The average time of the transactions to commit; and

(c) The time taken by longest transaction to commit.

Graph (a) shows that transactions are always committed faster
in OXenstored than in CXenstored. Moreover, in the best case, the
commit rate of OXenstored is very stable at around 700 transac-
tions per second, as opposed to the commit rate of CXenstored

which is around 300 transactions per second.

Furthermore, in the average case, Graph (b) shows that the
OXenstored performance are much stable for OXenstored than for
CXenstored, as the average delays for OXenstored are very low
(always under 1 second), unlike CXenstored which committed few
transactions over 10 seconds.

Finally, In the worst case, Graph (c) shows that CXenstored can
live-lock as some commit delays are over 12 minutes. On the other
hand, even in the worst case, OXenstored performance remains
very stable (around 1 second).

On graphs (a) and (b), there is a small glitch around the 17th
process. It is not totally clear what is the cause of that behavior.

Experiment Conclusions The obtained results clearly indicate
that CXenstored cannot deal with more than 100 concurrent trans-
actions, as opposed to OXenstored which does not show any sign
of performance issues. Furthermore, when access to the database
is the performance bottleneck, OXenstored is always quicker than
CXenstored, even in the case of few concurrent transactions. Fi-
nally, OXenstored has a very small variance compared to CXensto-
red, which means that we can expect that the system will behave in
a more predictable way.

7.2 Performance when interacting with theXEN hypervisor

Experiment Description Subsequently, we designed a more real-
istic test than the one of Section 7.1, to compare the performance
of CXenstored and OXenstored to start real guests. For this exper-
iment, we installed one guest running “Windows XP” and then we
repeated the following steps 100 times:

1. clone 50 guests from the initial one (a clone is functionally
equivalent to a fresh install, but it quicker);

2. sequentially start all the cloned guests;

3. sequentially shut-down all the cloned guests; and

4. uninstall (ie. destroy) all the cloned guests.

At the same time, we measured the time taken for starting and
shutting-down each guest.

Experiment Results The results are shown in Figure 7. These fig-
ures show the integral of distribution probability for the time taken
to complete guest start and shutdown. The results for OXenstored
and CXenstored are quite similar: half the guest are started in less
than 4.5 seconds and are shut down in less than 2 seconds. Further-
more, 90% of the guests are started by OXenstored and CXenstored
in less than 7.5 seconds and are shut down in less than 2.9 seconds.

Experiment Conclusions The results we obtained show that there
is no major differences between OXenstored and Xenstored in this
case, that is CXenstored is clearly not a bottleneck under normal
load.

7.3 Performance under load when interacting with theXEN
hypervisor

Experiment Description In this experiment, we wanted to start as
many guests as possible and compare the performance of CXensto-
red and OXenstored. Thus, we needed minimalist guests which do
not use many physical resources. Hence, we used a modified ver-
sion of “mini-OS”, a very small operating system distributed with
the XEN hypervisor sources, in order to start a lot of very small
guests performing long conflicting transactions concurrently. More
precisely, we created 160 “mini-OS” guests, with 1 virtual disk and



 0

 0.2

 0.4

 0.6

 0.8

 1

 3  3.5  4  4.5  5  5.5  6  6.5  7  7.5

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Duration (in seconds)

CXenstored
OXenstored

(a) Starting a guest.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.4  1.6  1.8  2  2.2  2.4  2.6  2.8

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

Duration (in seconds)

CXenstored
OXenstored

(b) Shutting down a guest.

Figure 7. Integral of the distribution probability of the time taken
by CXenstored and OXenstored to start a real guest.

1 virtual network each, which all do the following when they are
started:

1. start a transaction;

2. write a value in/local/domain/X/device/foo (whereX is
the current guest ID) using the opened transaction;

3. sleep 1 second;

4. write a value in/local/domain/X/device/bar (whereX is
the current guest ID) using the opened transactions;

5. close the opened transaction;

6. sleep 1 second; and

7. go back to step 1.

These transactions simulate the way some monitors report
statistics inside each guest (as the current memory usage for guests
which are not modified to run on top of the XEN hypervisor, as
“Windows” guests). We then sequentially started as many guests as
we can on one host and we measured the cumulative time taken to
start each of the guests.

Experiment Results Figure 8 shows the cumulative time taken to
start as many guests as possible in less than 20 minutes. CXenstored
begins to starts 30 guests at a constant rate of 2 seconds per guest
started, but it starts to live-lock around 40 guests. Finally, after 20

minutes, it never commits the transaction which should configure
and start the 70th guest. On the other hand, OXenstored keeps
starting the guests at a constant rate every 2 seconds and it started
all the 160 guest in less than 6 minutes.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  20  40  60  80  100  120  140  160

D
ur

at
io

n 
(in

 m
in

ut
es

)

Number of guests started.

CXenstored
OXenstored

Figure 8. Comparison of the time taken by CXenstored and OXen-
stored to start as many mini-OS guests as possible, when these
guests perform long transactions in a loop.

Experiment Conclusions Is is quite clear that OXenstored is not
at all influenced by the long transactions, as opposed to CXenstored
which begins to live-lock when more than 40 guests are started.
Hence, the performance of OXenstored is more stable and it scales
much better than CXenstored.

8. Related Work
Transactional databases have been widely studied in the last few
decades (Ḧarder and Reuter 1983; Bernstein et al. 1987). They
provide to the user a very simple way of encapsulating a group of
actions, called a transaction, with the following properties: If one
part of the transaction fails, the entire transaction fails (atomicity);
at every moment, the database remains in a consistent state: only
valid data are written in the database (consistency); other opera-
tions cannot access or see the data of an intermediate state during
a transaction (isolation); once the user has been notified that one of
its transactions has succeeded, the transaction will persist and not
be undone, even in case of a failure (durability). These properties
make the concurrent programming of such systems very easy, as
the user does not have to worry anymore about using locks to en-
sure data consistency.

The most common way to ensure atomicity in transactional
databases is a mechanism calledcompensation(Gray and Reuter
1992). In case of failure, compensation consists of executing the
compensating actions, corresponding to the executed actions of
the failed process, in the reverse order of their execution. This ap-
proach has recently gained renewed popularity in the context of
general-purpose programming known as “Software Transactional
Memory” (Shavit and Touitou 1995; Harris and Fraser 2003; En-
nals 2005; Riegel et al. 2006), where the purpose is to minimize
the use of locks (by the use of lock-free data structures, for ex-
ample). The same compensation mechanisms have also been ap-
plied successfully to build efficient and robust transactional web-
services (Biswas 2004; Biswas et al. 2008). Due to the nature of the
compensation mechanism (ie. keeping a list of the actions executed
by each started transaction), there is a straightforward but very
costly way to merge transactions: when a transaction is committed,



only the started transactions that read values written by the com-
mitted transactions are aborted. Note that this may lead to further
abortions of other transactions and so on, an effect calledcascading
aborts. This effect can lead to very hard-to-predict performance.

Thus, our approach based on “optimistic” transaction control,
where each transaction has a local copy (called ashadow treein the
database literature) of the database which it is modifying, leads to
much more predictable performance on tree-structured databases.
Hence, a few other systems have used the same form of “opti-
mistic” transaction control based on shadow trees, the first one of
them probably being the object store of GemStone (Butterworth
et al. 1991), two decades ago. However, our approach is much
crisper and simpler as the applications we consider have a greater
degree of locality to be exploited compared to the more general
object database applications usually considered.

Furthermore, functional data-structures, including tries, have
been widely studied (see the Okasaki’s book (Okasaki 1999), as ex-
ample). Our axiomatization is a step forward to integrate trie prop-
erties in a theorem prover in order to demonstrate the correctness
of algorithms on tries. Moreover, to the best of our knowledge our
work is the first to consider the use of tries in transactional setting.
Few other functional structures have been studied in that context,
as functional binary search (Trinder 1989). In that work, transac-
tions are pure functions taking an immutable database state as an
argument and returning an output and a new database state. Concur-
rent transactions are serialized by a database manager which then
uses a data dependency analysis and the referential transparency
property of pure functions to efficiently schedule the transaction’s
operations. Our approach is more flexible as it allows us to mix
functional and imperative features when using transactions (as in
Objective Caml).

More recently, the aim of the Harmony project (Foster et al.
2007) is to define a safe way of synchronizing different views of
a shared persistent tree data-structure. The synchronization mech-
anism of Harmony can be seen as the commit phase of a transac-
tional database, but where the only knowledge is the current state
of the transaction, rather than a trace of modifications as in the case
with compensation. The merging algorithm used by that tool needs
to be specified by the users and thus can become very complex. On
the other hand, our approach is much simpler and more efficient
but it requires some extra knowledge about the transaction which is
committed (ie. the modification prefix) and thus cannot be used in
our work.

9. Conclusion
This paper describes the design of OXenstored, a successful ap-
plication of functional technology in an industrial setting which
demonstrates the effectiveness of a limited form of pointer com-
parison in a functional context. Indeed, the OXenstored database
is represented and manipulated using an immutable prefix tree, for
which we give a simple and formal semantics. For performance
reasons, OXenstored uses reference cell comparison. This is a lim-
ited form of pointer comparison which can be elegantly integrated
with the prefix-tree semantics, ensuring a safe and efficient way to
merge concurrent transactions.

We also demonstrate the validity of our approach by implement-
ing in Objective Camlthe algorithms described in this paper and
evaluating them against CXenstored, the Xenstored service written
in C and distributed with the XEN hypervisor sources. These ex-
perimental results show that our transaction processor is not only
one third of the size of of itsC counterpart, but significantly out-

performs it. As a direct consequence of these results, OXenstored
will replace CXenstored in future releases of XENSERVER.

Acknowledgements
The authors would like to thank very much Jonathan Davies and
Richard Sharp for making useful suggestions. They also would like
to thank the anonymous ICFP reviewers whose comments greatly
improved some parts of the paper.

References
Paul Barham, Boris Dragovic, Keir Fraser, Steven Hand, Tim Harris, Alex

Ho, Rolf Neugebauer, Ian Pratt, and Andrew Warfield. Xen and the
Art of Virtualization. In SOSP ’03: Proceedings of the nineteenth
ACM symposium on Operating systems principles, pages 164–177. ACM
Press, 2003.

Philip A. Bernstein, Vassos Hadzilacos, and Nathan Goodman.Concur-
rency Control and Recovery in Database Systems. Addison-Wesley,
1987.

Debmalya Biswas. Compensation in the World of Web Services Composi-
tion. In SWSWPC, pages 69–80. LNCS 3387, 2004.

Debmalya Biswas, Thomas Gazagnaire, and Blaise Genest. Small logs for
transactional services: Distinction is much more accurate than (positive)
discrimination.IEEE International Symposium on High-Assurance Sys-
tems Engineering, pages 97–106, 2008.

Paul Butterworth, Allen Otis, and Jacob Stein. The gemstone object
database management system.Commun. ACM, 34(10):64–77, 1991.

Koen Claessen and David Sands. Observable Sharing for Functional Circuit
Description. InIn Asian Computing Science Conference, pages 62–73.
Springer-Verlag, 1999.

Robert J. Creasy. The Origin of the VM/370 Time-Sharing System. IBM
Journal of Research and Development, 25(5):483–490, 1981.

Robert Ennals. Efficient software transactional memory. Technical Report
IRC-TR-05-051, Intel Research Cambridge Tech Report, 2005.

J. Nathan Foster, Michael B. Greenwald, Jonathan T. Moore, Benjamin C.
Pierce, and Alan Schmitt. Combinators for bidirectional treetransfor-
mations: A linguistic approach to the view-update problem.ACM Trans.
Program. Lang. Syst., 29(3):17, 2007.

Edward Fredkin. Trie memory.Commun. ACM, 3(9):490–499, 1960.

Jim Gray and Andreas Reuter.Transaction Processing: Concepts and
Techniques. Morgan Kaufmann Publishers Inc., 1992.

Theo Ḧarder and Andreas Reuter. Principles of transaction-oriented
database recovery.ACM Comput. Surv., 15(4):287–317, 1983.

Tim Harris and Keir Fraser. Language Support for Lightweight Transac-
tions. InOOPSLA, 2003.

Xavier Leroy, J́erôme Vouillon, Damien Doligez, et al. The Objective Caml
system.http://caml.inria.fr/ocaml/, 1996.

Chris Okasaki.Purely Functional Data Structures. Cambridge University
Press, 1999.

Andrew Pitts and Ian Stark. Observable properties of higherorder functions
that dynamically create local names, or: What’s new. InMathematical
Foundations of Computer Science, Proc. 18th Int. Symp., pages 122–141.
Springer-Verlag, 1993.

Torvald Riegel, Christof Fetzer, and Pascal Felber. Snapshot Isolation
for Software Transactional Memory. InProceedings of the First ACM
SIGPLAN Workshop on Languages, Compilers, and Hardware Support
for Transactional Computing, 2006.

Manuel Serrano. Bee: an integrated development environment for the
Scheme programming language.Journal of Functional Programming,
10(4):353–395, 2000.

Nir Shavit and Dan Touitou. Software Transactional Memory. In Sympo-
sium on Principles of Distributed Computing, pages 204–213, 1995.

Phil Trinder.A functional database. PhD thesis, 1989.


