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Abstract

We present the design and implementation of dynamic type and value introspection for the OCaml
language. Unlike previous attempts, we do not modify the core compiler or type-checker, and
instead use the camlp4 metaprogramming tool to generate appropriate definitions at compilation
time. Our dynamics library significantly eases the task of generating generic persistence and I/0O
functions in OCaml programs, without requiring the full complexity of fully-staged systems such
as MetaOCaml. As a motivating use of the library, we describe a SQL backend which generates
type-safe functions to persist and retrieve values from a relational database, without requiring
programmers to ever use SQL directly.
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1 Introduction

One of the great advantages of programming languages inheriting the Hindley-
Milner type system [6,17] such as OCaml [12] or Haskell [11] is the conciseness
and expressiveness of their type language. For example, sum types in these
languages are very natural to express and use when coupled with pattern-
matching. These concepts can be translated to C or Java, but at the price of
a costly and unnatural encoding. Parameterised types and mutually recursive
types can also be used in OCaml or Haskell to let the user define arbitrary
complex data-types: part of the art of programming in such languages is to
encode invariants of the problem being resolved into the types, and let the
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compiler statically ensure these invariants are met during the whole execution
of the program.

Historically, languages implementing such type systems are statically
typed, with safety enforced at compile-time and details of types forgotten
at runtime. This helps generate efficient code with compact runtime sup-
port [9,15]. The lack of runtime type introspection does make some tasks
more difficult to perform than with more dynamically-typed languages such
as Python or Java. Pretty-printing, conversions between different types, or
value persistence is a largely manual process in ML-like languages, and can
be tedious and error-prone. Haskell solves these problems by using type-
classes [4,22], which is a natural concept but difficult to implement. The
type-inference algorithm becomes more complex and the runtime implemen-
tation suffers some performance penalties. In this paper, we concentrate on
dynamic types, but our work is influenced by ideas coming from type-classes.

Dynamic typing in the context of statically-typed programming languages
had been extensively studied [1] and even implemented in early versions of
the OCaml compiler. ! Such solutions involve so-called objects with dynamic
types (shortened to dynamics), which consist of pairing a value v with a type
expression 7 such that v is of type 7. The compiler is modified to:

 add a built-in type dyn such that all dynamics (v, 7) are of type dyn;

* add two constructs to communicate between type dyn and other types: one
to pair any value with its static type, and one to check if a dynamic value
is of type 7, and if so let the programmer read the associated value.

Such constructions are very powerful but difficult to implement correctly when
combined with a rich type environment. Moreover, their implementation is
quite intrusive in the compiler source code, as they modify the host type-
system and language constructs. Possibly as a result of this complexity, mod-
ern versions of OCaml no longer have dynamics as a language feature.

In this paper, we describe a simplified implementation of dynamics in
OCaml, based on staged programming to generate and execute code fragments
as part of the compilation process [21]. We describe a 2-stage transformer that
is sufficient for generating information about dynamic types, and we illustrate
the use of that information to show how to build a storage layer which can
easily persist ML values.

A key benefit of our approach is that it does not need to modify the core
OCaml compiler, and instead uses the camlp4 AST transformer to generate
extra code at compilation time. Our implementation: (i) parses a large sub-
set of OCaml types to a more succinct and expressive form than the syntax
tree which camlp4 provides; (i) implements an Object-Relational Mapping

! In OCaml 2.x in the dynamics branch in source control. [13]
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(ORM) which defines an efficient conversion to and from SQL; and (éii) pro-
vides a syntax extension to augment type definitions in existing code.
End-user programmers use the same types and values as they did
previously, but additional functions are generated to persist and retrieve
these values from the database. One of the benefits of our approach
is that it works as a library to the standard OCaml distribution—mno
modifications to the OCaml tool-chain are needed. For example:

type t = { name: string; mail: string } with orm 0CaML
let authors =

[ { name="Anil"; mail="avsm2@cam.ac.uk” };

{ name="Thomas"; mail="tgazagna@inria.fr" } |

let main () =

let db = t_open “contacts” in

t_save db authors;

let cam = t_get ~mail:(‘Contains "ac.uk”) db in

printf " Found %d @ac.uk” (List.length cam)
The type t is a standard OCaml type, with an annotation to mark it as a stor-
age type. Variables of type t can be saved and queried via the t_open, t_save
and t_get functions. The backend uses the SQLite database library, and SQL
is automatically generated from the applications datatypes and never used by
the programmer directly.

Parts of the extension were developed for use in XenServer and the Xen
Cloud Platform [19]—a large, complex OCaml application that has been de-
veloped since 2006. The Xen Cloud Platform runs in an embedded Linux
distribution and controls virtual machine activity across large pools of physi-
cal machines, and so requires efficient and reliable storage and 1/0O.

In the remainder of the paper, we first describe the type parsing (§2) and
value introspection libraries (§3). Then we motivate its use by illustrating the
design of a SQL persistence layer for ML values (§4), and finally an example
of a simple photo gallery (Section §5).

2 Type Introspection

2.1 Formal background

First of all, let us focus on the (declarative) type language of ML. Let us
consider two disjoint sets of names R and .A. We consider a type definition to
be an equation p(&) =t where p € R is a type variable, & is a possibly empty
collection {ay,...,a,} of type parameters «; € A and t is described by the
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following syntax :

tt ::= base a base type
| (g :tthay X .o X (ng :tt)p, ni €N, M; € {-, M} product type
| (ng:tt) + ...+ (ng : tt) Vi,n; € N sum type
| [tt] enumeration type
| tt — tt function type
| p|p(tt, ... tt) p € R type variable
| a € A type parameter

base ::= UNIT | INT(N) | FLOAT | STRING

Basic types correspond to all the basic types that can be defined in OCaml.
The INT(i) constructor stands for an i-bit integer. Names of named product
and sum come from an infinite set of symbols N. The parameters M; in the
named product indicate that such fields can be mutable; we will write (n : t)
when a field is immutable, and (n : t);; otherwise. The difference between
a named product and an enumeration is that values of type enumeration are
unbound and so there is no way to statically determine their size n; however,
this bound is explicit for a named product. Cartesian products (or tuples)
can be naturally encoded into a named product by giving to fields the names
corresponding to their position in the tuple:

def

1 X ... Xty = (1:t)) X ... x(n:ty,)

p(t1,...t,) is the total application to p of its type parameters: arity con-
sistency is not a problem as type functions are always total in ML. Finally,
when & = (), we write the type definition as p = t and we say that t is a
monomorphic type.

Now, let us consider ML programs from a type perspective, by ignoring
values and considering only types declarations. In the absence of recursive
modules and by flattening the name-space of types, every ML program is a
sequence of recursive type declarations. A program P can be modeled as
follows:

p11(G11) =t11 p1x(Gr1) = tia

P1,nq (dl,rn) - tl,n1 Pkny, (dk,nk) - tk,nk

where p;; can only appear in the term ¢, if either i < k or k = ¢ and
[ < n;. Moreover, any type parameter a appearing in a ¢; ; term should also
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be a member of the corresponding &;; on the left-hand side of the equation
definition.

The main goal of type introspection is to give an intuitive and easy-to-use
runtime representation of the types manipulated by the program. We believe
than an equational representation of the types, even if it is compact and intu-
itive to write, is not easy to use from a programmer’s perspective. Moreover,
using such equations requires a dynamic context which binds previous type
variables to type expressions, and this is impossible to have at preprocessing
time. 2 Instead, we expose a fix-point representation obtained by unfolding
the types variables within the same recursive set of equations and an induc-
tive call for previously defined type variables: this representation is finite and
computable at preprocessing time, while preserving the same type structures
that the programmer has defined. The main restriction is that some advanced
uses of the module system, such as recursive module definitions, cannot be
expressed using this technique.

2.2 Fixed-point Type Declarations

We now explain how to incrementally transform the sequence of recursive
equations into a sequence of independent fix-point declarations, where the
extended type structure (i.e. including abbreviation definitions) of the types
is not lost. We first extend the syntax for types defined above with a new
fix-point constructor:

tto=...|type p-tt

We then say that a type expression of the form type p-t is recursive if the type
variable p is a free variable in the type expression t; this is a static property,
which will be denoted by typer p -t and is equivalent to the p construct in
type theory.

Furthermore, such a type expression is mutable if the symbol M appears
in the type expression t. This can also be statically decided, and is denoted
by typens p-t. Both of these static properties can be composed, so one can
have a mutable and recursive expression which will be denoted by typegas p-t.

Let us now define how to translate from a sequence of recursive equations
into a sequence of fix-points expressions, while preserving some kind of struc-
ture that the programmer would expect. This problem had been studied in
the context of structural type-equivalence or subtyping [2,3,5,8] and the algo-
rithm used is based on a gaussian elimination technique; the correctness on
that technique is ensured by Beki¢’s Theorem which states that any mutually
recursive types can always be defined as simple p-types [23].

2 Recall that one of our implementation constraints is to obtain dynamics using the camlp4
preprocessor instead of compiler modifications.
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We have adapted this algorithm to work in our setting—mamely, for mu-
tually recursive parametrised types. First, we define t[u/u(&)] as the substi-
tution of the type variable p (and its possibly empty type parameters &) by
the expression u in t. This operation is defined by induction on ¢ :

if b € base : blu/u(&)] =b
({na ) x oo (g 2 ) ) [u/p(@)] = (=t [u/p(@)]) x - x (. = t[u/ ()]
((na 1) + o (2 ) [u/p(@)] = (na = /(@) + -+ (= tefu/p(A)]
1] /(@) = [t/ ()]
(1 = t2) /(@) = tafu/ (@) — talu/ (@)
alu/p(@)] = a

For the substitution of type variables, we need to consider two cases. First, if
p # 1 then, the induction is trivial:

pltis- . ta)[u/w(@)] = p(tifu/w(@)), ... ta[u/w(@)])

However, when p = pu, type arity has also to match and then we have :

plu/pl = u

plts - )/ p(@)] = ult[u/p(@)] [eu] ... [talu/p(@)] /]

In the first equation, & = (), and it is not possible to substitute a monomor-
phic type by a polymorphic one. In the second equation, & = {a,...,a,}
where n is the same as in ty...t, and u[vi/aq]. .. [v,/ay] is left-associative,
ie. (... (u[v1/a1])...)[vn/ow]; this corresponds to first doing induction on the
arguments, and then substituting in the expression of the type parameters
with the corresponding computed arguments.

Let us now consider a program P, viewed as a sequence of recursive equa-
tions, and let us focus on the last equation system of that sequence :
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We want to associate to P a sequence P of fix-point instructions of the form :

p,(a1) < o(p1)
P:X, ... X :

P, (Gn) < ©(pn)

I denotes the mapping associating each p; to the corresponding ¢; in the last
equation system of P. Also, dom(I') is the domain of I', i.e. the collection
{p1,-..,pn}. In order to define, ¢, we first introduce an intermediate function
called ¢*. This function inductively unfolds a type expression by replacing
each type variable by its value exactly once; in order to do so, it uses a set of
type variables to remember the ones already unfolded. Hence, the signature
of p* is:
©* 29T 5 dom(T) — tt

It associates a fix-point type expression to a collection of type variables (the
variables already unfolded) and a type variable (the variable to be unfolded)
as follows :

P ifpeR
p if p ¢ dom(T")
type p-T'(p) [w%p(pl)/m(dl)] o [%p(pn)/pn(@n)} R, ={p}UR

AS)
o*
S
I
e

Finally, ¢ is defined as :

w(p) = wi(p)

Intuitively, ¢ substitutes all the type variables by either their value if they
are defined in the same set of recursive equations or by the inductive value
computed previously otherwise, until all the variables in the right-hand side
expression of the equality are bound. The only point of discussion is whether
the type abbrevations should be preserved by this transformation; We really
want to emphasize here that sometimes it is not enough to preserve structural
equivalence. Indeed, the programmer may also wants to be aware of some
memory structures, the best example being when trying to persist values, as
we will discuss more in depth in §4. A simple example can be described by
the two programs P, and P; :

t1 = (n:x)
P P (t2 = (n: INT(31) x STRING>)
xr = INT(31) X STRING

Here, t; and ty, are structurally equivalent; however, our “programmer” in-
tuition is that these two types should result in distinct relational schemas,
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where the table associated to t; will feature an explicit indirection to the
table associated to x:

table t; table table to
id n id| 1|2 id | x| 29
z(id) X

In this example, the table associated to type t; has two columns: one is
a unique identifier; and the other column corresponding to field n contains
identifiers referencing elements in the table associated to type x. The table
associated to type x has three columns: the unique identifiers that column n
in table t; is referencing, and the two others columns contain 31-bits integers
and strings.

On the right hand side, the table associated to type t, has three columns,
the columns associated to x being inlined directly. If we use a transformation
based on structural equivalence to pass from the types to the schemas, the
schema representation of ¢; and ¢y will be indistinguishable. Both tables will be
similar to the one associated to to, which is not expected from a programmer’s
point-of-view.

The type system of ML is based on structural equivalence, and so our choice
might seem contradictory as we distinguish types that are indistinguishable by
the type system. However, in our practical experience [19], such indirections
are always put in the code for some reason (to be able to use physical equal-
ity or to ensure maximum sharing for example) and so we believe that this
extended structure should be pushed down to the persistence layer as well.

When applying ¢ on ¢;, z and ¢, to obtain P, and P,, we can remark that
t, and t, are different (even using a-conversion) :

t, < type ty - (n : type x - (INT(31) x STRING))
L
z < type x - (INT(31) x STRING)

P, : ( ty < type to - (n : INT(31) x STRING) )

We now focus on a more complex example using recursion and inductive
definitions. Consider a program P, with the sequence of recursive equations :

x = y(t)

P (t:STRING)- (@)= | |
yla) =z X«

8
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We can now apply ¢ and check for static properties to obtain :

x < typer x - (type y - [rx t])
P: (z — type t - STRING) :

y(a) < typer y - [type z - (y(t) x a)]

Again, the obtained result is finite and preserves the extended type struc-
ture (type abbreviations and type structure). The usual solution® would have
been to forget non-recursive type constructors to obtain the more compact but
less precise:

T —typegr - |lx Xt
P <§<—STRING>- - PR [ _]

y(o) « typer y - [y(t) x o

This more compact structure can trivially be obtained from our extended
structure at a later stage.

3 Recall we did not choose this method because it forgets information that the programmer
explicitly annotated in their source code.
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2.3 Implementation

The transformation described in §2.2 has been implemented in OCaml as
a preprocessing library, called type-of. This library uses camlp4 and the
type-conv framework [18] to make type introspection available to the pro-
grammer. Hence, for each type definition annotated with the special keyword
type_of, it will automatically generate a finite value of type Type .t describing
the type shape:

module Type = struct OCAML
type t =
| Unit | Int of int option | Float | String
| Dict of (string x ['RW|'RO] x t) list
| Sum of (string x t list) list
| Enum of t
| Arrow of t X t
| Var of string x (t list)
| Param of string
| Type of elt
and elt = {
recursive : bool;
read_only : bool;
name : string;
contents : t }
end

As described previously, this transformation works for a large subset of
ML types, including recursive and polymorphic types. We have the following
correspondence: on the left-hand side, types as they were defined in §2.1; on
the right-hand side, types as they are defined in an OCaml program:

t=... typet=... with type_of
t4 ... 1let typeoft=...
t(ag,...,a,)=... type (‘al,...,‘an)t =...
t(og,...,ap) < ... let type of t typeof al ... typeof an=...

The translation from a set of recursive equation into fix-point expres-
sions is well-known. Our contributions are to: (i) make the fix-point
expressions available to the programmer to inspect static types at run-
time; and (7) tailor the technique for preprocessing time using only
syntactic information and keeping the core compiler tool-chain signifi-
cantly simpler.  Furthermore, modularity and abstraction are handled
quite naturally using induction on types variables—a programming style
close to the one used when type-classes are available. For example :

10
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(* type definition *) OCAML
type ot = A of a | X of x list
(* auto-generated code *)
let type_of_t type_of_a =
Type {
recursive : (is_recursive type_of_a) || (is_recursive type_of x);
read_only = (is_read_only type_of_a) && (is_read_only type_of x);
name = “t";
contents = Sum [
( "A", [typeof.a] );
(X", [Enum (type_of x)] )

}

In this case, type_of x has to be defined previously for the program to
compile. This definition may have either been automatically generated pre-
viously using the type-of library, or been defined previously by the user. The
latter option makes the type-of library easily extensible, especially for abstract

types.

3 Value Introspection

3.1 Formal background

As we did for types, we now introduce the syntax for values. The considered
values are concrete memory representations; we thus define a collection £ of
memory locations and we assume that we have a memory function M : (£ x
tt) — vv associating typed memory locations to values (implicitly performing
a conversion from ML values into introspectable values), where introspectable
values are described by the following syntax :

vv = base a base value
| (vv,...,vv) tuple construction
| (n:vv) n €N  sum construction
| (v:p) ve€L,pett typed variable
| T an unknown value
base ::= UNIT no value
| INT(Z) integer constants
| FLOAT(R) real numbers
| STRING(X™) strings constants

Base values are tagged with their types; this can be performed directly when
calling M as the type representation p as computed in §2.2 is available. For
example, the integer 42 will hence be represented as INT(42). We ensure
that the type of such variable does not have any free parameters; it is not
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possible using our scheme to have a value representing an a-list. Furthermore,
unlike the type syntax, value representations do not carry any names. This
information is already present in the type description obtained earlier (see
§2.2). Hence, programmers can reason by induction both on value and type
runtime representations at the same time

The only constructs are unbounded product and sum constructors. Values
corresponding to named sum types are built by remembering the name of the
tag and the corresponding value. Functional values have no (explicit) runtime
representation and are represented by the symbol T.

As for types, our goal is to provide at runtime to the programmer a finite
and easy-to-use representation of the values. However, unlike types, values are
built and modified at runtime. It is thus impossible to build a translation at
preprocessing time, as the program needs to run to actually produce values.

_>
We solve this by generating at preprocessing time, a pair of functions p: ML —

H
vv and p: vv — ML. These functions transform back and forth, at runtime, any
ML value of type p into a finite representation whose syntax is vv, extended
with a fix-point operator:

vv = ...|val v-vv

The extra fix-point operator is used to deal with cyclic values. Recursive
types do not automatically imply corresponding cyclic values, so this infor-
mation is not already encoded in the type description and must be explicitly
encoded in the value. We denote by F'V(v) the free variables in v. We can
easily define substitution on values; if © and v are two values and v a variable,
then u[v/7] is the value u where all instances of v have been replaced by v :

(ur, .. un) /7] = (wfv/9] x ... X un[v/4])
(n:u)v/y] = (n U[’U/’YD
YN/ =
[v/7] =

Otherwise: u[v/~y

We now detail how the functions are generated at preprocessing time.
Recall that a program, from a type perspective, is a sequence of recursive
equations :

pn<&n) =tn
Following the technique described in §2.2, we associate to that program a
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o
sequence of values P :

such that :
¥(p) = (Wiy(p) : p); and

/

(v:p) ifyelL

val v - v[ur/m] ... [un/v] v € FV(v[ui /7] ... [un/7n))
X vlur /7] - [t/ Yn otherwise, where :
2(P)(7) = o v =M(v,p);

e {(71,...,m} = FV(v);
e and Vi, u; = wz )(gi)(%)-

L fru L

As with types, the transformation of an implicit collection of recursive
equations into a fix-point representation is done by induction. It suffices to
substitute value locations by their contents and stop when all value variables
are bound to an inner val declaration. It is worth emphasising that, even if
they look similar, the function ¢* (defined in §2.2) and ¢* are different. ¢*
is a value computed at preprocessing time, and the substitutions are done
only once; whereas 1* is a function that computes a new value each time
it is called. This implies that every translation from an ML value into an
element of vv is an expensive operation: all the memory of the ML values
needs to be scanned and some re-allocated into the new structure*. These
costs are difficult to eliminate entirely, but our implementation (§3.2) uses
lazy evaluation to evaluate only necessary parts of the translated ML value.

Using similar techniques, we also compute 1! to get :

+—

P1 (Gr) =~ (t)

ek
>
=
i

4 Some potentially large primitive values, such as string values will not be reallocated but
passed by reference.
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The only notable difference is, as 1) is not surjective, that 1»~! can produce an
exception if the dynamic value cannot be converted back to a normal ML value.

Let us now consider an example. We are assuming the memory function
to have the following shape :

(x1,2) — y x INT(32)
M < (25,2) — y x INT(52)

(y7y) — T1 X T2 X X1

T = typer T - ((type y-(zxzx1)) X INT(SI))

Yy =typer y - (type - (y X INT32) X type x - (y X INT32) X type x - (y X INT32)>
Then the runtime representation = (z1) = ¥(z)(x1) is the pair (v : p) where :

v =wal 7 - (val Y- ((z1:2) x (y x INT(52)) X (21 : z)) X INT(32)>

3.2 Implementation

The transformation described in §3.1 has also been implemented as a library
called value. As for the type-of library, it uses camlp4 and type-conv to
generate at preprocessing time, a pair of functions to translate to and from
an ML value and a dynamic value expression. To this end, the ML value
should be of an explicitly declared ML type, annotated with the keyword
value. The dynamic value expression implements the syntax given in 3.1 :

module Value = struct OCAML
type loc
type elt =
| Unit | Int of int64 | Float of float | String of string
| Tuple of elt list
| Sum of string x elt

| Unknown
| Val of loc x elt
| Var of loc
type t = { val : elt; typ : Type.t }

end

We then have the following correspondence between the notations given in

14
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the previous section and the value library :

N
4 ... let value_of t = ...
(;

t+— ... let t_of value =...

Type loc is left abstract as it is implemented as 0bj.t: the location of
an object is the reference cell where it is stored. Comparing locations has
to be done using the OCaml physical equality operator ==. The function
value_of _t uses some unsafe features of OCaml to store all the values already
seen in an untyped way, when unfolding the value. The t_of _value function
also uses some unsafe features of OCaml , but only when cyclic ML values are
built from a value of type Value.t. However, this is hidden in the generated
library code and never exposed to the end-user programmer.

4 SQL Persistence

We now describe how to use the type-of and wvalue libraries to build an inte-
grated SQL backend to persist ML values. This backend is integrated seam-
lessly with OCaml, and the user does not write any SQL queries manually. For
each type definition t annotated with the keyword orm, a tuple of functions
to persist and access the saved values are automatically generated:

(* User-defined datatype «) OCawmL
type t = ... with orm

(* Auto-generated signatures *)

val tinit: string — (t, [ 'RW ]) db

val t_init_read_only: string — (t, [ ‘RO ]) db
val t_get: (t, [< ‘RW | 'RO])db — ... — t list
val t_save: (t, [ ‘/RW ]) db — t — unit

val t_delete: (t, [ ‘RW ]) db — t — unit

The t_init function connects to the database to check if values of type
named t have already been persisted; if so, it checks if the structure of t is
consistent with previously persisted values of types named t, that is if values
of the current type t can be safely stored and/or read into the database. It
performs this schema check using the structural sub-typing-aware type redirec-
tions described earlier (§2.2). If the database is new, it constructs new tables
in the database with the right schema. This automatic translation between
ML types to SQL schemas is described in more detail later (§4.1).

The t_get function has a part of its signature left unspecified; this is be-
cause the type of the query arguments are parameterised by t (see §5 for
an example of query arguments). As an additional layer of type-safety, the
database handle has a phantom polymorphic variant [‘RO| ‘RW] that distin-
guishes between mutable and immutable database handles. This causes a
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compilation error if, for example, an attempt is made to delete a value in a
read-only database.

The t_save function stores values into the database; it uses mutability
information exposed by the type-of library to perform sharing optimisation
when possible: for immutable values, our scheme use hash-consing [7,10]
to save memory space. Implementing correctly (mutable) value updates
has been an interesting challenge. Consider the following piece of code:

(* Type defintions x) 0OCaML
type x = { mutable x : string } with orm

typet = { a: int; b: x } with orm

(> Code x)

lett={a=0;b={x= “foo" }}

and db = t_init "mydb.db” in

t_save db t;

t.b.x + “bar”’;

tsave db t

This should create only one record of each type in the database; the second
call to t_save needs to detect that the value of type x is at the same loca-
tion but has different content. Our implementation uses: (4) a hidden global
cache, associating unique identifiers to ML values for a given database name;
(#1) weak pointers to clean this cache when a value is garbage-collected; and
(7ii) SQL triggers to update the cache correctly when new values are deleted
or added.

The t_delete function raises interesting implementation problems as well.
In a garbage-collected language, it is not clear how to mix automatic memory
management with persistent values. We cannot rely on liveness analysis and
life-propagation algorithms to know if an object can be deleted or not, as
the purpose of persisting objects is to make the life of a value longer than
the program which created it. Conventional counting mechanisms also do not
work when cyclic values are present. Our implementation uses a mix of these
two techniques, but we view the precise semantics of a “persistent deletion”
function as an open challenge, as it can be confusing for the programmer to
determine the behaviour without knowing the details of our framework.

4.1 Schema creation

SQL schemas are automatically constructed when connecting to a new
database. Let us suppose we have a set of column and table names N such
that 0,1 € N and such that they verifies the following property : if n € N/
and m € N, then n-m € N. Then, the schema creation syntax of SQL can
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be defined as :

sql = tF (c; : type) ... (e : type) t € N,c; € N table creation
sql;sql sequence
type:= I(i) | R | T | F(t) | L i€ N,t € N column type

where [ (i) stands for an i-bit integers, R for reals, T for texts, F'(t) for row IDs
of foreign tables and L for binary data. Furthermore, to be valid, a creation
query needs to verify that every column of the created table has a unique
name:

Validity Property : ¢t (¢ i t1) - ... (¢x : tg) is valid if ¢ # j implies that
C; 7é Cj

We can now describe how to translate any ML type (with no free type
parameters) into a valid SQL statement. Figure 1 shows how to inductively
build the collection of fields from a name and an element of tt, i.e. it defines
a function F : N’ x tt — (N X type)*. Equations (1)-(4) translates basic
constructors of tt into simple fields with the appropriate type; Equations (5),
(8) and (9) means that enumeration and type variables are stored in separate
tables and thus the row ID of this foreign table need to be stored in the current
table. Finally, equations (6)-(7) fold the induction through the sub-terms of
the current term of type tt, and propagate the name changes. We ensure the
validity property by giving a different field name to each sub-induction call.

S

S

g

S

(=

S~—

S~—
AN N N N N N N /N

T = W N =
~— N T

Ful{my ct1) x oo x (my 2 b)) = Fomy (01) -« Frvomy, (Tk) 6
Follmyct) +.oomy i tg)) =(n-0:T) - Frmy (t1) - oo o - Fromy, () (7
Fultype p-t) = (n: F(n)) 8

Fulp) = (n: F(n)) 9

Fig. 1. Field semantics for schema creation

Figure 2 shows how to build the set of SQL tables from a name and element
of tt, i.e. it defines a function 7 : A x tt — sql. In equations (10) and (11),
basic constructors of tt do not affect the set of tables (they are handled in
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the previous field semantics). Equations (12) and (15) create foreign tables ¢,
which are referenced as fields of type F'(¢) from the field semantics in Equations
(5),(8) and (9). Moreover, equation (12) adds the field (n -0 : F(n-0)) to
the field semantics of the n - 0 table: an enumeration is stored as a simply
linked list in the database, the nezt relation being stored in that new field.
Equations (13) and (14) also fold the induction through the current term as
with the semantics in (6) and (7).

T.(base) =0 (10)
Tty = 12) =0 (11)
T.([t) =n-0F(n-0: F(n-0)) - Fpoi(t) ; Tno(t)
(12)
Ta({ma s 1) X oo (mg 2 ) = Ty (t1) 5 - 5 Ty (B) (13)
To({ma t) + oo (g 2 t) = T (1) 5 o+ 5 Ty (1) (14)
To(type p-t) =nt Fu(t) 5 Talt) (15)
Tulp) =0 (16)

Fig. 2. Table semantics for SQL

Finally, the SQL queries which create the tables to persist values of type
pis T,(p), where p is the dynamic type as computed in §2.2.

5 Example: Photo Gallery

We do not explain the full semantics of queries and writes in this paper.
Instead, we choose to illustrate the capabilities of the ORM library by con-
structing a simple photo gallery. We start that example by defining the basic
ML types corresponding to a photo gallery:

type image = string OCaML
and gallery = {

name: string;

date: float;

contents: image list;
} with orm

We hold an image as a binary string, and a gallery is a named list of images.
First, initializations functions are generated for both image and gallery:

val image_init : string — (image, [ ‘RW ]) db 0CawmL
val gallery_init : string — (gallery, [ ‘RW ]) db

val image._init_read_only : string — (image, [ ‘RO ]) db

val gallery_init_read_only : string — (gallery, [ ‘RO ]) db
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Intuitively, calling gallery_init will:
(i) use type-of to translate the type definitions into:

let type_of_image = Ext ( “image”, String ) 0CamL
let type_of_gallery =
Ext(“gallery”, Dict [(“name”, String); (“date”, Float) ; (“contents”, Enum

type_of_image)])

(7i) use the rules defined by Figures 1 and 2 to generate the database
schema:

CREATE TABLE image (-_id__ INTEGER PRIMARY KEY, image TEXT); sQL
CREATE TABLE gallery (__id_- INTEGER PRIMARY KEY,

gallery__name TEXT, gallery__date REAL, gallery__contents__0 INTEGER);
CREATE TABLE gallery__contents_0 (--id_- INTEGER PRIMARY KEY,

__next__ INTEGER, _size__ INTEGER, gallery__contents__0 INTEGER);

Second, using the value library, any value of type image or gallery can
be translated into a value of type Value.t. Using rules similar to the ones
defined in Figures 1 and 2, saving functions can be then defined, having as
signature:

val image_save : (image, [ ‘RW ]) db — image — unit 0CawmL
val gallery_save : (gallery, [ 'RW ]) db — gallery — unit

Finally, using type-of, functions to access the database are generated, with
the following signature:

val image_get : (image, [< ‘RO | ‘RW ]) db — OCawmL
?value:['Contains of string | ‘Eq of string] | —
?custom:(image — bool) —
image list
val gallery_get : (gallery, [< ‘RO | ‘RW ]) db —
?name:[ ‘Eq string | ‘Contains string] —
?date:[ ‘Le float | ‘Ge float | 'Eq float | ‘Neq float] —
?custom:(gallery — bool) —
gallery list

For both types, we are generating: (i) arguments that can be easily trans-
lated into an optimized SQL queries; and (i) a more general (and thus
slow) custom query function directly written in OCaml. On one hand, (1)
is achieved by generating optional labelled arguments with the OCaml type
corresponding to the fields defined by Figure 1. This allows the programmer
to specify a conjunction of type-safe constraints for his queries. For example,
the field name is of type string which is associated to the constraint of type
[ ‘Eq of string | ‘Contains of string ]. Values of this type can then
be mapped to SQL equality or the LIKE operator. On the other hand, (i)
is achieved using a SQLite extension to define custom SQL functions—in our
case we register an OCaml callback directly. This is relatively slow as it by-
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passe the query optimizer, but allows the programmer to define very complex
queries.

let db = gallery_init " louvre.db” in OCaML
let i = new_image () in
let gallery = { name="Leonardo"; date=today(); contents=[i] } in
gallery_save db gallery;
match gallery_get ~name:(Eq “Leonardo”) db with
| [ g] — printf "Found 1 gallery: %s" g.name
| - — failwith "Wrong numver of galleries”

The above code snippet saves a gallery named “Leonardo” containing an
unique fresh image in a database called louvre.db. It then queries all the
galleries whose name is strictly equal to “Leonardo”. It expects to find exactly
one gallery with this name; otherwise it throws an error.

6 Related Work and Conclusions

There are a number of extensions to functional languages to enable gen-
eral meta-programming, such as Template Haskell [20] and MetaOCaml [21].
MetaHDBC [14] uses Template Haskell to connect to a database at compile-
time and generate code from the schema; in contrast, we derive schemas di-
rectly from types in order to make the use of persistence more integrated with
existing code. We avoid a dependency on MetaOCaml by using camlp4 in
order to fully use the OCaml toolchain (particularly ARM and AMDG64 native
code output), and also because we only need a lightweight syntax extension
instead of full meta-programming support. We believe that our work is sim-
pler and easier to extend than Yallop’s deriving [24] which is inspired by the
construct in the same name in Haskell [11]. Language-integrated constructs
to manipulate databases is also an active topics for mainstream languages,
such as the LINQ [16] library for the .NET framework. The small syntax
extension we are proposing in this paper is more naturally integrated with the
host language.

We have shown how a type and value introspection layer using the AST
transformer built into OCaml can be used to create useful persistence ex-
tensions for the language that does not require manual translation. As fu-
ture work, we are building libraries for network and parallel computation
using the same base libraries. The library is open-source and available at:
http://github.com/mirage/orm.
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