
Projection of Rational Pomset Languages

Thomas Gazagnaire 1

Citrix Systems R&D Ltd.
Black Horse House, Castle Park

Cambridge CB3 0BL, United Kingdom

Key words: concurrency - formal languages - partial orders - pomsets - projection
- rational languages - finitely-generated languages

1 Introduction

Over the last few decades, partial-order models have become more and more
popular for specifying and verifying concurrent and distributed systems. These
models are intuitive and very expressive. They have been used to describe
concurrent systems communicating either by shared memory [15,3], or by
(a)synchronous message-passing [19,14], as well as more general concurrent
systems [22,10]. The trade-off from expressiveness is that verification of partial-
order models is much more difficult, as model-checking against partial-order
properties [1,18] or logical formulas [20] is not decidable in general. However,
interesting classes of partial-order models have been defined, combining good
expressiveness while keeping verification problems decidable [18,9,8,5].
Moreover, when considering model-checking of sequential models, abstraction
techniques [21] are commonly used. Indeed, they decrease the size of the model
and thus speed-up model-checking algorithms whose complexities are usually
exponential with respect to the model size. Exact abstraction techniques do
not add behaviors inconsistent with the initial model. These techniques are
essential for counterexample refinement based on abstraction [2,11].

In this paper we focus on exact abstraction techniques for partial-order models
based on rational pomset expressions (which subsume rational Mazurkiewicz
traces languages and HMSCs). We extend the work of Genest, Hélouët and
Muscholl [7] which show that it is decidable to know whether the projected
language of an HMSC is still the language of an HMSC. However, they use
a direct construction based on the existential boundness of HMSC channels.
As pomsets allow auto-concurrency, it seems difficult to translate this tech-
nique directly to rational pomset expressions. Thus we adopt a rather indirect

Email address: thomas.gazagnaire@citrix.com (Thomas Gazagnaire).
1 Part of this work was done while the author was at IRISA - ENS Cachan, France.

Preprint submitted to Elsevier 17 November 2008

approach by cleaving this problem into two parts: (i) showing that it is decid-
able to know whether the projected language of a rational pomset expression
is finitely generated (finitely-generated languages of HMSCs have been studied
in [13]); and (ii) characterizing recognizable languages of pomsets ([4] studies
regular languages of pomsets and [18,17] characterize recognizable languages
of Mazurkiewicz trace and MSCs). To glue these two parts together, one can
apply the McKnight theorem[16], which states that any recognizable language
which is finitely generated is also rational. We focus in this paper on (i) only.
First, we introduce the model of pomsets in Section 2. Then, we define the
boxed-pomset model in Section 3 and give its basic properties in Section 4.
Finally in Section 5, we tackle part (i) using boxed pomsets.

2 Pomsets

First of all, let us recall some well-known definitions related to formal lan-
guages. A monoid is a structure (M, ∗, 1) where M is a set of elements and
the operator ∗ : (M×M) → M is an associative composition law with 1 being
its neutral element. As usual, the set of rational expressions of M, denoted by
REX(M), is defined by induction as the set of symbols ∅ ∪ M ∪ {αβ} ∪ {α +
β} ∪ {α⋆}, where α, β ∈ REX(M). The language LM of a rational expres-
sion is a function from REX(M) to M defined by induction as the following:
LM(∅) = 1, for any m ∈ M, LM(m) = {m}. For any α, β ∈ REX(M), we have
LM(αβ) = {m∗n | m ∈ LM(α), n ∈ LM(β)} and LM(α+β) = LM(α)∪LM(β).
Furthermore, we have LM(αn) = {m ∗n | m ∈ LM(α), n ∈ LM(αn−1)}, for any
n > 1 (and α1 = α). Finally LM(α⋆) is defined as 1

⋃

n≥1 LM(αn).

Furthermore, through the rest of the paper, we fix an infinite set E of events
and a non-empty set Σ of labels. We also fix a mapping λ : E → Σ which
assigns to each event a given label. A labeled partial order (or simply an lpo)
over Σ and λ is a structure (E,≤) where E ⊂ E and ≤⊆ E×E partially orders
E, ie. ≤ is reflexive, antisymmetric and transitive. We denote by (Ep,≤p) the
components of the pomset p and by 4p the transitive reduction of ≤p. An
isomorphism of lpo f : (E1,≤1) → (E2,≤2) is a bijective map which preserves
labels and ordering, ie. such that for all e, e′ ∈ E1, e ≤1 e′ ⇔ f(e) ≤2 f(e′)
and λ(e) = λ(f(e)). The isomorphism class of an lpo (E,≤) is called a pomset
([22,10]) and is denoted by [E,≤]. Intuitively a pomset is an lpo in which we
pay no attention to the choice of the set E, other than its labels and their
respective ordering. We denote by P the set of all possible pomsets and by
[Ep,≤p] the components of the pomset p. When ≤p= ∅, we simply write [Ep].
The pomset model is a natural extension of strings and partial orders, which
can be seen as pomsets having all theirs events totally ordered and as pomsets
with a one-to-one labelling.

We denote by (p \ E) the restriction of the pomset p to events which are
not in E, ie. E(p\E) = (Ep \ E) and ≤(p\E)=≤p ∩(Ep \ E)2. The projection

2

of a pomset p on an alphabet Γ is a function πΓ : P → P which restricts
p to its observable labels, i.e. πΓ(p) = (p \ λ−1(Σ \ Γ)). From now on, we
fix a relation R ⊆ Σ × Σ (we do not assume any properties for R, so it
might not be reflexive or symmetric). We define the composition of the pom-
sets p1 and p2, denoted by p1 ◦ p2, as that augment the union of the two
pomsets obtained by adding to the order all pairs (e, e′) ∈ Ep1

× Ep2
such

that (λ(e), λ(e′)) ∈ R, and then taking the transitive closure of the result.
More formally, we define p1 ◦ p2 as [Ep1

⊎ Ep2
, (≤p1

∪ ≤p2
∪ ≤R)∗] where

≤R= {(e, e′) ∈ Ep1
×Ep2

| (λ(e), λ(e′)) ∈ R)}. This composition extends some
well-known composition laws as parallel composition where R = ∅, strong
concatenation where R = Σ × Σ, Mazurkiewicz trace composition [3] where
R is a so-called dependency relation, that is a symmetric and reflexive re-
lation, MSC sequential composition [14,19] where R is the disjoint union of
total relations and Causal MSC composition [5] where R is a disjoint union
of dependency relations. One can check that ◦ is associative, well-defined and
admits the empty pomset 1P as neutral element. Thus, P is a a monoid and
rational pomset expressions REX(P) and their languages LP are well-defined.

Figure 1 gives an example of pomset composition and projection. Each event
e is represented by its label λ(e) only. Moreover, for convenience, only the
transitive reduction of ≤ is drawn (also called its Hasse diagram). On this
figure, we fix Σ = {a, b}, R = {(b, a)} and Γ = {a}. Obviously, this example
shows that πΓ(p1 ◦p1) 6= πΓ(p1)◦πΓ(p1). We show in the following section that
a slight extension of pomsets that we call boxed pomsets need to be used to
satisfy this equality.

p1 p2 p3 p4 p5

Fig. 1. Composition and projection of pomsets with Σ = {a, b}, R = {(b, a)} and

Γ = {a}. We have p1 ◦ p1 = p2, , πΓ(p1) = p3, p3 ◦ p3 = p4, πΓ(p2) = p5 and p4 6= p5.

3 Boxed Pomsets

Figure 1 shows clearly that the projection of pomset composition is, in general,
not equals to the composition of pomset projection. The boxed-pomset model
have been introduced in [6] to correct this draw-back. In this section, we
redefine them in a simpler and much concise way as well as giving complete
proofs of their properties in Section 4. However, it is possible to show that
these models are equivalent.

Let us first introduce some notations. We identify subsets Γ of Σ and pomsets
p having exactly |Γ| elements such that λ(Ep) = Γ and ≤p= ∅. Furthermore,
for any E, F ∈ E we define 〈E, F 〉 as {(e, f) ∈ E × F | λ(e) = λ(f)}. For a
partial-order relation ≤, we write E ;≤ F if λ(F) = λ(E) and 〈E, F 〉 ⊆≤.

3

Definition 1 (Boxed Pomsets) A boxed pomset b = [E,≤] is a pomset
whose events can be partitioned into the three sets E−, Ei and E+ such that:
(i) [E−] = [E+] = λ(Eb); (ii) E−

;≤ (Ei ⊎E+); and (iii) (E− ⊎Ei) ;≤ E+.

The sets E− and E+ are called the b’s input and output and the pomset b|Ei

the b’s inside. A boxed pomset can be seen as a simple pomset augmented
with explicit extrema events, for, at least, every label appearing in it. This
simple pomset corresponds to the boxed-pomset inside and the collection of
minimal and maximal events to its input and output. Indeed, (i) and (ii)
uniquely define E− as the collection of minimal events of b (for each label);
and (i) and (iii) uniquely define E+ as the collection of maximal events of
b (for each label). Thus, we can detail the components of boxed pomset b
as [E−

b ⊎ Ei
b ⊎ E+

b ,≤b]. When necessary, we use E−+
b instead of E−

b ⊎ E+
b .

Moreover, (i) implies that λ(Ei
b) ⊆ λ(Eb), that is Ei

b might not contains all
the label appearing in b. The collection of all boxed pomsets is denoted by B.
Examples of boxed pomsets are given in Figure 2. They are represented likely
as pomsets, but we draw separate rectangles to distinguish clearly their input,
inside and output. Input is always on the top, output on the bottom.

b1 b2 b3 b4 b5

Fig. 2. Composition and projection of boxed pomsets with Σ = {a, b}, R = {(b, a)}
and Γ = {a}. We have b1 • b1 = b2, π̄Γ(b1) = b3, b3 • b3 = b5 and π̄Γ(b2) = b5.

We introduce now two natural maps B and U which links pomsets and boxed
pomsets. We define first the boxing operator B : P → B which builds, from a
pomset p, a boxed pomset having p as inside: giving two isomorphic pomsets
q = [Eq] and r = [Er] such that λ(q) = λ(r) = λ(p), B(p) is defined as
the boxed pomset [Eq ⊎ Ep ⊎ Er,≤], where ≤ is the transitive closure of the
union of ≤p, 〈Eq, Ep〉 and 〈Ep, Er〉. Remark that ≤ is the minimal partial order
containing ≤p which also ensures that (ii) and (iii) of definition 1 are satisfied.
By construction, B(p) is a well-formed boxed pomset admitting p as inside.
Conversely, we define the unboxing operator U : B → P which extracts the
inside of a boxed pomset as U(b) = (b \E−+

b). By construction, for any p ∈ P,
U · B(p) = p. Figure 1 and Figure 2 illustrate these definitions, where the
following equalities hold: B(p1) = b1, B(p4) = b4, U(b2) = p2 and U(b3) = p3.

As for pomsets, we define the projection of a boxed pomset b on an observ-
able alphabet Γ as a function π̄Γ : B → B which restricts only the inside of

4

b to events which are labeled by Γ, ie. with no modifications to its input and
output. More formally, π̄Γ(b) = (b \ (Ei

b ∩ λ−1(Σ \ Γ)). In the same way, we
define the composition of two boxed pomsets b and c, denoted by b • c, as that
restricts the boxing of b and c pomset composition by removing events which
belong to b and c inputs and outputs. that is, b• c = (B(b◦ c)\ (E−+

b ⊎E−+
c)).

This operation is associative and well-defined, admitting 1B = B(1P) = 1P as
neutral element. Thus (B, •, 1B) is a monoid and rational boxed-pomset expres-
sions and their languages are well-defined. Figure 2 gives an example of boxed-
pomset composition and projection. When fixing Σ = {a, b}, R = {(b, a)} and
Γ = {a}, let us remark that π̄Γ(b1 • b1) = π̄Γ(b1) • π̄Γ(b1). Lemma 1 states
that this property is always satisfied for boxed pomsets - which is actually the
reason why we consider them.

As usual, all mappings f : X → Y defined above are extended naturally
to f : 2X → 2Y by applying the operator to each elements of the sets, ie.
f(X) ≡ {f(x) | x ∈ X}. We also extend f to rational expressions, ie. obtaining
f : REX(X) → REX(Y) using the following construction: given a rational
expression α ∈ REX(X), f(α) is obtained by simply replacing each pomset
x in α by the boxed pomset f(p). Remark that this operation does not imply
that the languages are mapped, as f might not be a morphism. We use · to
denote the usual composition of functions, ie. f ·g is the function x → f(g(x)).

4 Properties of Rational Boxed-Pomset Expressions

We start this section by characterizing more precisely the behavior of the
boxed-pomset projection and of the boxing operator. Indeed, Lemma 1 and
Lemma 2 show that these operations are monoid morphisms.

Lemma 1 For any Γ ⊆ Σ, π̄Γ : B → B is a monoid morphism.
That is, for any δ ∈ REX(B), LB · π̄Γ(δ) = π̄Γ · LB(δ) and π̄Γ(1B) = 1B.

Proof : Let us fix b, c ∈ B, E = λ−1(Σ \ Γ) and X = π̄Γ(b) • π̄Γ(c). We have

X =
(

B
(

(b \ E1) ◦ (c \ E2)
)

\ E3

)

where E1 = (Ei
b ∩ E), E2 = (Ei

c ∩ E) and

E3 = (E−+
b ⊎ E−+

c). Let us show that X = π̄Γ(b • c) as well.
As extremal events of b and c are not deleted in (b \ E1) and (c \ E2), we
have (b \ E1) ◦ (c \ E2) = ((b ◦ c) \ (E1 ∪ E2)). Moreover, if a set S does
not contain any extremal events of a pomset p, then B(p \ S) = (B(p) \ S).
Thus, B((b \ E1) ◦ (c \ E2)) = (B(b ◦ c) \ (E1 ∪ E2)). Finally, we can write
X = (B(b ◦ c) \ (E1 ∪ E2 ∪ E3)), which is exactly π̄Γ(b • c). �

Lemma 2 The boxing operator B : P → B is a monoid morphism.
That is, for any α ∈ REX(P), LB · B(α) = B · LP(α) and B(1P) = 1B.

Proof : Let us fix p, q ∈ P, X = B(p) ◦ B(q), and E = (E−+
B(p) ⊎ E−+

B(q)). We
have B(p)•B(q) = (B(X)\E). Let us show that (B(X)\E) = B(p◦q) as well.

5

Let us consider the pomset (X \ (E−
B(p) ⊎ E+

B(q))), whose partial-order is the

transitive closure of the union of ≤p, 〈Ep, E
+
B(p)〉, ≤q, 〈E

−
B(q), Eq〉 and {(e, f) ∈

E+
B(p) × E−

B(q) | (λ(e), λ(f)) ∈ R}. When restricted to events of Ep and Eq, it
is exactly ≤p◦q. That is, (X \ E) = p ◦ q. Furthermore, ≤B(X) can be defined
as the transitive closure of ≤X ∪〈(E−

X , E−
B(p) ⊎E−

B(q))〉 ∪ 〈(E+
B(p) ⊎E+

B(q)), E
+
X〉.

Thus, ≤(B(X)\E) is the transitive closure of ≤X ∪〈E−
X , EX〉 ∪ 〈EX , E+

X〉, which
is also ≤B(X\E). Thus, (B(X) \ E) = B(p ◦ q). �

Next, Proposition 1 underlines the key property of boxed pomsets: a rational
boxed-pomset expression can be obtained from any rational pomset expres-
sions such that the language of the former is equivalent (up to an unboxing op-
eration) to the projected language of the latter. Moreover, this boxed-pomset
expression is very simple to obtain as it is suffices to apply π̄ ·B to the rational
pomset expression.

Proposition 1 For any Γ ⊆ Σ, πΓ · LP = U · LB · π̄Γ · B.

Proof : For any p ∈ P, U · B(p) = p. Thus, for any α ∈ REX(P) we have
πΓ · LP(α) = πΓ · U · B · LP(α). Then, one can check that for any b ∈ B and

Γ ⊆ Σ, πΓ ·U(b) =
(

b \
(

E−+
b ⊎ (Ei

b ∩λ−1(Σ \Γ))
))

, which is exactly U · π̄Γ(b).

This leads to πΓ · LP(α) = U · π̄Γ · B · LP(α). Finally, using Lemmas 2 and 1
we obtain that for any α ∈ P, πΓ · LP(α) = U · LB · π̄Γ · B(α). �

As example, let us consider the projection on Γ = {a} of the language of the
rational pomset expression p⋆

1p
⋆
4, where p1 and p4 are the pomsets defined on

Figure 1. Applying Proposition 1, we obtain that πΓ · LP(p
⋆
1p

⋆
4) = U · LB(b⋆

3b
⋆
4),

where b3 and b4 are the boxed pomsets defined on Figure 2. This language
contains all the pomsets which are the union of n totally ordered events labeled
by a and 2m concurrent events labeled by a, for any m, n ≥ 0. Clearly, we
cannot exhibit a finite collection P of pomsets such that any pomsets belonging
to πΓ · LP(p

⋆
1p

⋆
4) can be decomposed into a product of elements of P , ie. the

projected language is not finitely generated.

5 Projection of Rational Pomset Languages

The purpose of this section is to show that one can decide whether the pro-
jection of a rational pomset language is generated by a finite number of prime
pomsets, ie. by a finite number of pomsets which can not be decomposed into
the product of two non-neutral elements. More formally, a pomset p is a prime
pomset if, for any pomsets q and r such that p = q ◦ r, then either q = 1P or
r = 1P. Then, the prime set of a pomset p, denoted by ‖p‖, is defined as the
smallest set such that any decomposition of p into p1 ◦ . . . ◦ pn with p1 . . . pn

6

are prime pomsets, implies that {p1, . . . , pn} ⊆ ‖p‖. As usual, we naturally
extend this definition to set of pomsets: the prime set of L is the union of the
prime sets of every pomsets that belong to L, ie. ‖L‖ =

⋃

p∈L ‖p‖. Finally, a
language L is finitely generated if its prime set ‖L‖ is finite.

First of all, computing the prime set of a given pomset can be done efficiently,
as shown by Lemma 3. Indeed, this is equivalent to compute the strongly con-
nected components of a graph based on the considered pomset. This technique
is an extension of the ones used to compute the prime decomposition of MSCs
[12] and of causal MSCs [5].

Lemma 3 Any pomset p ∈ P is prime if, and only if the directed graph Gp =
(Ep, (≤p ∪ R1 ∪ R2)) is strongly connected, where:

R1 = {(e, f) ∈ Ep × Ep | (f 4p e) ∧ (λ(f), λ(e)) /∈ R}; and
R2 = {(e, f) ∈ Ep × Ep | (e 6≤p f) ∧ (f 6≤p e) ∧ (λ(f), λ(e)) ∈ R}.

Proof : First of all, let us show that if p is not prime then Gp is not strongly
connected. Indeed, let us suppose that p = q ◦ r with q, r 6= 1P. Then, let us
remark that R1 ∩ (Er × Eq) = ∅ and R2 ∩ (Er × Eq) = ∅. This implies that
elements of Eq and Er are not in the same strongly connected component,
that is Ep contains at least two strongly connected components.
Second, let us show that if Gp is not strongly connected then p is not prime.
Indeed, let us denote by E1, a maximal strongly connected component of Gp

which is a strict subset of Ep, without incoming edges and let us fix E2 =
(Ep \ E1) (and thus E2 6= ∅). We then consider P to be the transitive closure
of (≤p ∪ R1 ∪ R2) and Q = P ∩ (E1 × E2). First, as elements of E1 and E2

are not in the same strongly connected component, Q is not reflexive. Thus,
Q = (P \P−1)∩ (E1 ×E2). That is, Q is the transitive closure of the union of
{(e, f) ∈ E1 ×E2 | e ≤p f ∧ (λ(e), λ(f)) ∈ R} and (R2 \R−2

2)∩ (E1 ×E2). The
former set is exactly the relation added when we compute the composition of
p1 and p2, the restrictions of p to E1 and E2. That is p = p1 ◦ p2. �

Lemma 3 leads to a direct algorithm to decompose a pomset into its prime
set. However, computing the prime set a projected rational pomset language
is much more difficult as it might be not finitely generated and thus might
have an infinite prime set. The solution we propose consists to use the boxed
pomsets introduced in Section 3 and 4 as an intermediate model to finitely
represent the projected languages. Proposition 2 shows that this boxed-pomset
representation have a nice fix-point property: it is sufficient to bound their ⋆-
iterations to deduce properties on their unbounded languages.

Proposition 2 For any b ∈ B, ‖U(b|Σ|+1)‖ = ‖U(b|Σ|+2)‖ iff ‖U(b⋆)‖ is finite.

Proof : Let us have a n big enough and let us denote by bk = [E−+
k ⊎Ei

k,≤k]
the k-th occurrence of b in b ◦ . . . ◦ b, where b is composed n times using ◦.

7

Let us also write U(bn) = [E,≤] (with 4 the transitive reduction of ≤) and
GU(bn) = (E,→) where → is (≤ ∪R1 ∪ R2) as defined in Lemma 3.
First of all, U(bn) is defined as ((b◦ . . .◦b)\(

⋃

1≤k≤n E−+
k), where b is composed

n times using ◦. When considering the associated graphs, we obtain that GU(bn)

is the restriction of
⋃

1≤k≤n Gbk
to E, augmented with

⋃

k 6=l(→ ∩(Ei
k × Ei

l)).
Moreover, one can check that if (ek, el) is in →, with ek ∈ Ek and el ∈ El, then
for any N such that k + N ≥ 1 and l + N ≥ 1 we have (ek+N , el+N) in→ as
well, with ek+N ,el+N the corresponding events in Ek+N and El+N . Moreover,
if (ek, el) is in → then either (i) ek ≤ el; or (ii) (el 4 ek) ∧ (λ(el), λ(ek)) /∈ R;
or (iii) (el 6≤ ek) ∧ (ek 6≤ el) ∧ (λ(el), λ(ek)) ∈ R. However, in case k > l, then
only case (ii) is possible. As λ(E+

l) = λ(E−
k) ⊆ Σ, k > l implies k − l ≤ |Σ|.

–(⇒), let us assume that ‖U(b|Σ|+1)‖ = ‖U(b|Σ|+2)‖. As strongly connected
components can appear only if there are some edges (ek, el) ∈ (→ ∩(Ei

k×Ei
l)),

for k > l, then we must have ‖U(b|Σ|+1+N)‖ = ‖U(b|Σ|+N+2)‖ for any N > 0,
that is U(b⋆) is finitely generated and its prime set is exactly ‖U(b|Σ|+1)‖.
–(⇐), let us assume that ‖U(b|Σ|+1)‖ 6= ‖U(b|Σ|+2)‖. Then, there exists k and
an edge (e, f) ∈→, where e ∈ E|Σ|+2, f ∈ Ek and 1 < k ≤ |Σ| + 1 such
that a strongly connected of new kind is created in GU(b|Σ|+2). As this edge
already exists between the corresponding events in E|Σ|+1 and Ek−1 this new
component has to the be union of strongly connected components of GU(b|Σ|+1).
Thus, it will continue to grow at each iteration. That is, ‖U(b⋆)‖ is infinite. �

Finally, Proposition 2 can be used in conjunction with Proposition 1 to decide
whether the projection of a rational pomset language is finitely generated.
This leads to Theorem 1 which is the main result of this paper.

Theorem 1 It is decidable to know whether the projection of a rational pom-
set language is finitely generated.

Proof : Let us have α ∈ REX(P) and Γ ⊆ Σ. We want to decide whether
πΓ · LP(α) is finitely generated. Proposition 1 indicates that is equivalent to
decide whether U · LB · π̄Γ · B(α) is finitely generated. Then, Proposition 2
shows that is equivalent equivalent to compare the prime pomsets of finite
languages U · LB · π̄Γ · B(α|Σ|+1) and U · LB · π̄Γ · B(α|Σ|+2), where αk is the
rational expression obtained by syntactically replacing every ⋆ by a k. �

–Acknowledgements– The author would like to thank Löıc Hélouët, Blaise
Genest and Philippe Darondeau for their helpful comments and suggestions.

References

[1] R. Alur and M. Yannakakis. Model Checking of Message Sequence Charts. In
CONCUR’99, pages 114–129.

[2] E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
Guided Abstraction Refinement. In CAV’00, pages 154–169.

8

[3] V. Diekert and G. Rozenberg, editors. Book of Traces. World Scientific, 1995.

[4] J. Fanchon and R. Morin. Regular Sets of Pomsets with Autoconcurrency. In
CONCUR’02, pages 402–417.

[5] T. Gazagnaire, B. Genest, L. Hélouët, P.S. Thiagarajan, and S. Yang. Causal
Message Sequence Charts. In CONCUR’07, pages 166–180.

[6] T. Gazagnaire and L. Hélouët. Event Correlation with Boxed Pomsets. In
FORTE’07, pages 160–176.

[7] B. Genest, L. Hélouët, and A. Muscholl. High-Level Message Sequence Charts
and Projections. In CONCUR’03, pages 308–322.

[8] B. Genest, D. Kuske, and A. Muscholl. A Kleene Theorem and Model Checking
Algorithms for Existentially Bounded Communicating Automata. IC, 204(6),
2006.

[9] B. Genest, A. Muscholl, H. Seidl, and M. Zeitoun. Infinite-State High-Level
MSCs: Model-Checking and Realizability. In ICALP’02, pages 657–668.

[10] J.L. Gischer. The Equational Theory of Pomsets. TCS, 61, 1988.

[11] S.G. Govindaraju and D.L. Dill. Counterexample-Guided Choice of Projections
in Approximate Symbolic Model Checking. In ICCAD’00, pages 115–119.

[12] L. Hélouët and P. Le Maigat. Decomposition of Message Sequence Charts. In
SAM’00, pages 47–60.

[13] J.G. Henriksen, M. Mukund, K. Narayan Kumar, and P.S. Thiagarajan. On
Message Sequence Graphs and Finitely Generated Regular MSC Languages. In
ICALP’00, pages 675–686.

[14] ITU-TS. Recommendation Z.120: Message Sequence Chart (MSC). 1999.

[15] A. Mazurkiewicz. Concurrent Program Schemes and Their Interpretations.
Technical Report DAIMA PB–78, Aarhus University, 1977.

[16] J.D. McKnight. Kleene Quotient Theorem. Pacific Journ. of Math., 1964.

[17] Rémi Morin. Recognizable Sets of Message Sequence Charts. In Helmut Alt
and Afonso Ferreira, editors, STACS, volume 2285 of Lecture Notes in Computer
Science, pages 523–534. Springer, 2002.

[18] A. Muscholl and D. Peled. Message Sequence Graphs and Decision Problems
on Mazurkiewicz Traces. In MFCS’99, pages 81–91.

[19] OMG. Unified Modeling Language Specification, 2003.

[20] D. Peled. Specification and Verification of Message Sequence Charts. In
FORTE’00, pages 139–154.

[21] A. Pnueli. Keynote Address: Abstraction, Composition, Symmetry, and a Little
Deduction: The Remedies to State Explosion. In CAV’00, page 1.

[22] V. Pratt. Modeling concurrency with partial orders. IJPP, 15(1):33–71, 1986.

9

	Introduction
	Pomsets
	Boxed Pomsets
	Properties of Rational Boxed-Pomset Expressions
	Projection of Rational Pomset Languages
	References

