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2 Perspetives in Conurrenyevents or states, faulty behaviors,...) from a partial observation of asystem, suh as a log �le. The observation has to be partial for tworeasons. Firstly, some state information or ations may not be di-retly aessible. Seondly, due to the huge size of many distributedsystems, it is simply not feasible to keep trak of all state information.In online diagnosis, a system is ontinuously monitored and faults aresupposed to be deteted as soon as possible after their ourrene.Traditionally fault diagnosis is performed by indutive reason-ing, using expert heuristi rules between faults and observations.However, suh expert knowledge is diÆult to obtain and easily be-omes obsolete when a system's on�guration evolves. The so-alledmodel-based approah brings more appliable solution to fault diag-nosis. In this framework, one aptures knowledge of system dynamisin some formal system model suh as transition systems [17℄, Petrinets [2℄ or message sequene harts [10℄. Faults are inferred fromobservation and the system model. One might be interested in de-termining if an unobserved fault has ourred, as in [17℄, or in �nd-ing all possible runs that may have led to the observation, as in [2℄.Another objetive ([8℄) is to ompute a summary of possible expla-nations, that is to annotate observations with information that helpexplaining what might have ourred. The additional informationan be ausal relations among observed events, known loal proper-ties of states or events in the observation, and events of interest notontained in the logged information.One drawbak of model-based diagnosis is that a omplete mod-el of the monitored system is not always available. Furthermore, itis diÆult to update a system model when a system's on�gurationhanges. Often, the only knowledge available for diagnosis onsist-s of some partial properties of a system's behaviour. Consideringthis, we propose a logi-based approah to diagnosis. More preise-ly, we apture knowledge of a system's behaviour using formulae insome suitable temporal or modal logis. Temporal or modal logisenables one to speify properties of system's dynamis in a naturalway. In many ases, updating properties of a system in the form oflogi formulae an be done easily by hanging a limited number ofsubformulae.In this paper, we represent behaviours of distributed systemswith restrited partial orders whih de�ne ause-e�et relations a-mong loal states. These partial orders are alled partially orderedomputations. We propose a temporal logi over partially orderedomputations and all it simply the logi of partially ordered om-putations (LPOC). The main feature of LPOC is to reason aboutevolution of patterns of ausal orders. We use temporal operators



Logi-Based Diagnosis for Distributed Systems 3similar to Computation Tree Logi. The design of LPOC is motivat-ed by the fat that, for many distributed systems suh as networkprotools, properties about their exeutions are often available in theform of \whenever this pattern of ausal ordering ours, some oth-er pattern will follow in future", where patterns are usually shortsequenes of message exhanges.We study o�-line diagnosis based on LPOC. The problem is todetermine whether there exists an explanation for a given observa-tion and a given LPOC formula � desribing a system's dynamiproperties. An explanation is a distributed behaviour whih ouldhave given rise to the observation and whih satis�es the formula�. We show that this problem is undeidable in general. The unde-idability result is mainly due to the undeidability of satis�abilityproblem of LPOC. We note that the satis�ability problem of severalsimilar temporal logis in the literature are undeidable. These in-lude m-LTL [15℄, a loal temporal logi on Lamport diagrams, andtemplate message sequene harts [9℄. However, for a given K, if welimit explanations to so-alled K-inuening distributed behavioursin whih eah proess ausally inuenes every other proess in abounded manner, then the restrited diagnosis problem is deidable(for the given K). Furthermore, one an e�etively ompute a om-pat summary of all K-inuening explanations.In the next setion, we introdue the syntax and semantis ofthe logi LPOC. Setion 3 de�nes the diagnosis problem assoiatedwith LPOC and show that it is undeidable. Setion 4 establishesthe deidability of the restrited diagnosis problem where only K-inuening explanations are onsidered. We also analyze the om-plexity of the deision algorithm. Setion 5 disusses related workand postulates some future diretions. To redue lutter, some proofsare omitted, but an be found in an extended version in [19℄.2 Logi of Partially Ordered ComputationsThrough the rest of the paper, we �x a �nite nonempty set P ofproess names, and A a �nite nonempty set of atomi propositions.We let p; q range over P.De�nition 1. A partially ordered omputation (or omputation forshort) over (P;A) is a tuple (S; �;�; V ) where:� S is a �nite set of (loal) states.� � : S ! P identi�es the loation of eah state. For eah p 2 P,we de�ne Sp = fs 2 S j �(s) = pg.



4 Perspetives in Conurreny� � � S � S is a partial order, alled the ausality relation.Furthermore, for eah p, � restrited to Sp�Sp is a total order.� V : S ! 2A is a labeling funtion whih assigns a set of atomipropositions to eah state. We all V (s) the valuation of s.Intuitively, a omputation (also alled Lamport diagram in theliterature [15℄) represents the ausal ordering among loal states in adistributed exeution, in whih states of eah proess are sequentiallyordered. The valuation of loal state s ollets the atomi proposi-tions that hold at s. Figure 1-a) shows a omputation. States aredesignated by blak dots with assoiated name s1; : : : ; s6. ProessesP;Q;R are represented by vertial lines, and states loated on a pro-ess line are ordered from top to bottom. Finally, valuations of statestake value in fa; b; g, and are represented between two brakets nearthe assoiated state. Note that we onsider only �nite omputations,sine we address only o�ine diagnosis in this paper. We will say thattwo omputations (S; �;�; V ) and (S0; �0;�0; V 0) are isomorphi i�there is a bijetion f : S ! S0 suh that �(s) = �0(f(s)) for any s 2 S,s1 � s2 i� f(s1) �0 f(s2) for any s1; s2 2 S, and V (s) = V 0(f(s)) forany s 2 S. We identify isomorphi omputations and write W �W 0if Wand W 0 are isomorphi.
s1s2
s3

P Q R s5
s6

fa; bgfag
fbg

fb; g
fbgs4 fg fag

fbg

P s5fb; gR
s2
s3Figure 1: a) A omputation W b) the 1-view of s3 in WLet (S; �;�; V ) be a omputation, and s; s0 2 S. As usual, wewrite s < s0 when s � s0 and s 6= s0. For eah p 2 P, we de�ne�p� S � S as: s �p s0 i� s; s0 2 Sp, s < s0, and there does notexist s00 2 Sp with s < s00 < s0. That is, �p is the \immediate"sequential ordering of states belonging to p. We let l � S � S bethe least relation suh that � is the reexive and transitive losureof l. For eah p; q 2 P with p 6= q, let us de�ne �pq� S � S asfollows: s �pq s0 i� s 2 Sp, s0 2 Sq, and s l s0. We also de�ne�= ([p2P �p)S([p;q2P;p6=q �pq). We note that < is in fat the



Logi-Based Diagnosis for Distributed Systems 5transitive losure of �. If s � s0, we say s0 is a (ausal) suessorof s, and all s a (ausal) predeessor of s0. We emphasize that � isnot equal to l. Indeed, l does not neessarily apture the relationsde�ned by the loal ordering on proesses. Consider for instanestates s5 and s6 in Figure 1-a: we have s5 � s6, but not s5 l s6.A state s is minimal if it has no predeessor, and maximal if it hasno suessor. A ausal hain is a sequene s1s2 : : : sn of states wheres1 � s2 � : : :� sn.In the sequel, we de�ne a temporal logi of partial-order ompu-tations (alled \LPOC" for short) to reason about distributed behav-iors. It has two basi features. First, at a state s of a omputation,atomi formulae assert that a \pattern" ours in a bounded past orbounded future of s. Seondly, we onsider a branhing time frame-work with CTL-like operators and reason along sequenes of ausallyordered states.De�nition 2. Let (S; �;�; V ) be a omputation, and m be a naturalnumber. The m-view of s 2 S, denoted #m(s), is the olletion ofstates s0 in S suh that there exists a ausal hain of length at mostm starting from s0 and ending at s. More preisely, #m(s) = fs0 j9s0; : : : sn 2 S; n � m and s0 = s0 � s1 � : : : � sn = sg. Similarly,the m-frontier of s, denoted by "m(s), is the olletion of states s0 inS suh that there exists a ausal hain of length at most m startingfrom s and ending at s0.Figure 1-b) shows an example of m-view. Note that the 0-viewand 0-frontier of a state s are both the singleton set fsg. Eahstate s has at most jPj suessors, one belonging to eah Sp. Thus,indutively, the m-view and m-frontier of s ontains at most Nm =Pmi=0 jPji = 1�jPjm+11�jPj states. In order to reason about the \pattern"of a omputation, we also need a notion of projetion.De�nition 3. Let W = (S; �;�; V ) be a omputation over (P;A),and let A � A. The projetion of W onto A is the omputationW 0 = (S0; �0;�0; V 0) where S0 = fs 2 S j V (s) \ A 6= ;g, and �0, �0,are the respetive restritions of �;� to S0 and V 0(s) = V (s)\A forevery s 2 S0.The atomi formulae of our logi will assert that the projetionof the omputation formed from the m-view or the m-frontier of astate is isomorphi to a given omputation. We are now ready tode�ne the logi LPOC.De�nition 4. The set of LPOC formulae over a set of proesses Pand a set of atomi propositions A, is denoted by LPOC (P;A), andis indutively de�ned as follows:



6 Perspetives in Conurreny� For eah p 2 P, the symbol lop is a formula in LPOC (P;A).� Let m be a natural number, A be a subset of A, and T = (S; �;�; V ) be a omputation suh that V (s) � A for every s 2 S. Then#m;A(T ), "m;A(T ) are formulae in LPOC (P;A).� If ';'0 are formulae in LPOC (P;A), then EX', EU(';'0) areformulae in LPOC (P;A).� If ';'0 2 LPOC (P;A), then :' and ' _ '0 are formulae inLPOC (P;A).From now on, we shall refer to formulae in LPOC (P;A) simplyas formulae. Their semantis is interpreted at loal states of a om-putation. For a omputation W and a given state s of W , we writeW; s j= � when W satis�es �, whih is de�ned indutively as follows:� W; s j= lop i� the loation of s is p (i.e. �(s) = p),� W; s j=#m;A(T ) i� the projetion of #m(s) onto A is isomorphito T .� W; s j="m;A(T ) i� the projetion of "m(s) onto A is isomorphito T .� W; s j= EX' i� there exists a state s0 in W suh that s0 is aausal suessor of s and W; s0 j= '.� W; s j= EU(';'0) i� there exists a ausal hain s1s2 : : : sn in Wwith s = s1. Further, there exists an index i in f1; 2; : : : ; ngwith W; si j= '0, and W; sj j= ' for every j in f1; 2; : : : ; i� 1g.The semantis for boolean ombinations and negations of formu-lae is as usual. We assume the standard boolean operators. We de-�ne some derived temporal operators as follows: EF' � EU(true; '),EG' � EU(';'^:EXtrue), AX' � :EX(:'), AF' � :EG(:'), andAG' � :EF:'. We an also assert the truth of an atomi proposi-tion a at a state of a omputation with 'a = Wp2P�lop^ #0;fag(Tp;a)�,where eah Tp;a is the omputation ontaining a singleton state ofloation p and valuation fag.For a omputation W and a LPOC formula ', we say that Wsatis�es ', written W j= ', i� there exists some minimal state sminof W suh that W; smin j= '. We say that ' is satis�able i� thereexists a omputation W suh that W j= '.For appliation to diagnosis, it is useful to de�ne the notionof a omputations satisfying a olletion of formulae, one for eahproess. Formally, for a omputation W = (S; �;�; V ) and a P-indexed family of formulae f'pgp2P , we say W satis�es f'pgp2P ,writtenW j= f'pgp2P by abuse of notation, i� the following ondition



Logi-Based Diagnosis for Distributed Systems 7holds: for eah p 2 P, Sp 6= ; and W; sp j= 'p where sp is theminimum state in Sp (i.e. sp � s for every s 2 Sp). Note thatW j= f'pgp2P i� W j= Vp2PEU(:lop; lop ^ 'p).We have hosen the existential until operator beause it is essen-tial in asserting properties suh as \whenever some pattern T ours,some other pattern T 0 will follow". More preisely, this demands thatalong every ausal hain, whenever a pattern T ours, pattern T 0should our later and no more pattern T an our again before thepoint at whih the pattern T 0 has ourred. This kind of propertiesare ommonly needed in pratial appliations.Let us de�ne a simple example with LPOC. We de�ne a formulameaning that whenever a onnetion phase desribed by a patternTonn ours between two proesses Client and Server, then a datatransfer desribed by a pattern Tdata neessarily ours later. Thisformula an be expressed by AG', where :' = (loClient^ "2;A(Tonn)) =)(EX(loClient^EX(EU(loClient; loClient^ " 2;A0(Tdata)))), where thepatterns Tonn and Tdata are desribed in Figure 2,A = fdis; nolient; lient; onnetedg, andA0 = fDataSent;DataRev;DataAkg.
Figure 2: Two patterns3 DiagnosisAn usual framework to perform diagnosis (see for instane [2, 10, 17℄)in a distributed system is as follows. A entral agent, alled the diag-noser, ollets information from some proesses in the system. Eahproess is equipped with mehanisms that signal information to thediagnoser. This equipment an be implemented by means of odeinstrumentation, or by hardware mehanisms that raise alarms andsends them to the diagnoser. Of ourse, due to the size of runs of realsystems, the diagnoser only ollets a limited subset of what really



8 Perspetives in Conurrenyours in the system. The olleted information on observed statesand ausal dependenies is alled an observation. From this obser-vation and a model of the system, the diagnoser an then outputan explanation of what have been observed. This generi frameworkis depited in Figure 3: proesses are represented by squares, on-neted by ommuniation links. Blak squares symbolize the loalobservation mehanisms, that send their observations to the diag-noser, symbolized by the entral ellipse.
Figure 3: A diagnosis frameworkIntuitively, an observation desribes everything that is \reord-ed" during the exeution of some pre�x of a omputation. We as-sume that the monitoring mehanisms transmit \reorded" obser-vable atomi propositions to the entral diagnosis system. Onlyreords of the same proess are guaranteed to be reeived by theentral diagnosis system in the order they were sent. In addition toloal observation on eah proess, observations ontain some ausalordering among observed states loated on di�erent proesses. Thisallows �nest desriptions of observed behaviors, and to rule out someexplanations that might be ompatible with the shu�e of loal ob-servations during diagnosis. This ausal ordering an be inferredif observations are tagged for instane with vetorial loks [14, 6℄.Nevertheless, the observation arhiteture and the way omputationsare logged is out of the sope of this work.Our goal is to use LPOC for diagnosis. We shall represent knowl-edge of system dynamis by a P-indexed family f�pgp2P of formulae.We also reord observation of partial exeution in the form of a om-putation. The objetive of diagnosis is to �nd explanations, alsoin the form of omputations, whih ould have led to the observa-tion and satis�es the P-indexed family of formulae. As there ouldbe many explanations, it is also desirable to ompute summarativeinformation of the olletion of explanations.



Logi-Based Diagnosis for Distributed Systems 9To this end, we �x Aob � A the subset of observable atomipropositions, and Aex � A the subset of explanatory atomi proposi-tions. Typially, explanatory atomi propositions orrespond to thefaults or state information that annot be diretly aessed. On theother hand, observable atomi proposition indiate state informationthat an be diretly \reorded", for instane, alarms and abnormalbehavior. To formulate the diagnosis problem, we an now formalizethe notions of observation and explanation.De�nition 5. An observation is a omputation (S; �;�; V ) suhthat for eah state s in S, V (s) � Aob. Let O = (SO; �O;�O; VO) bean observation and W = (SW ; �W ;�W ; VW ) a omputation. Then,W is an explanation for O i� there exists an injetive mapping f :SO ! SW suh that:(i) 8s 2 SO, �O(s) = �W (f(s)) and VO(s) = VW (f(s)) \Aob.(ii) 8s; s0 2 SO, if s �O s0, then f(s) �W f(s0).(iii) For every s in the image of f , VW (s) \Aob 6= ;. Furthermore,for any s0 2 SW , if �W (s0) = �W (s), s0 �W s and VW (s0)\Aob 6=;, then s0 is also in the image of f .Conditions i) to iii) ome from the supposed faithful and non-lossy nature of the observation mehanism. More preisely, ondition(i) means that the loation mapping should be respeted by the ob-servation mehanism, and that in explanations, only states at whihat least one observable atomi proposition holds may be \reorded",and hene appear in the observation. Intuitively, (the truth of) anobservable atomi proposition orresponds typially to the preseneof some alarm or observed abnormal behaviour. And the monitor-ing mehanism ould only detet the presene of observable atomipropositions, but not their absene. We also suppose that the ob-servation mehanisms do not produe atomi propositions that werenot observed. Hene, if no observable proposition hold at a state sof an exeution, then s is not reorded in the observation.Condition (ii) asserts that the reorded ausal orderings mustoriginate from an atual dependene in the exeution. The onverseproperty (reording all ausal dependenies) is not demanded, sinesome ausal orderings in the explanation may not be \reorded".For generality, we do not impose any more spei� ondition on thereording of ausality ordering. We remark however that our result-s ould be extended easily to deal with more spei� ondition onreording of ausalities, whih may arise from partiular appliationdomains.



10 Perspetives in ConurrenyCondition (iii) states that there is no loss during reording ofstates: if a state of proess p is reorded, then any ausally preedingstates s0 of p must be reorded in ase the valuation of s0 ontain-s observable atomi propositions. In other words, we assume thatthe monitoring mehanism is itself free from faults and thus do notmiss any presene of observable abnormal signals. In some applia-tion domains suh as teleommuniation networks, the monitoringmehanism is also part of the observed system. In suh situations,it may be sometimes neessary to onsider also the potential faultsinurred by the monitoring mehanism. However, in this paper, wewill onsider that the observation mehanisms is non-lossy.Let us illustrate the notions of observation and explanation onthe examples of Figure 4. In this example, there are two proesses\Client" and \Server", and the observable atomi propositions on-sist of \Reset" and \Reboot" (shown in bold in Figure 4. BothW;W 0are explanations for O in Figure 4. InW , the server glithes, rebootsitself and requests the lient to reset. Upon reeiving the requestfrom the server, the lient then resets itself. In W 0, the server breaksdown and reboots itself after repairing, while the lient resets itselffollowing detetion of loss of onnetion (\LostConn") and failure tore-establish the onnetion.
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Client Server
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{ Reboot }
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Figure 4: Two omputations W and W 0, and an observation OWe emphasize that while an explanationW represents a full exe-ution of a system, an observation indued byW , may have reordedinformation from a part ofW . Thus, the image of f may be a propersubset of the states of W whose valuation ontains observable atom-



Logi-Based Diagnosis for Distributed Systems 11i propositions. Similarly, some ausal dependenies among observedstates may not have been saved during the observation proess. Onthe examples of Figure 4, we an notie that there is a ausal de-pendeny between the states of W labeled by reboot and reset, butthat this ausality does not appear in the observation O. However,we suppose the observer is faithful, that is, it does not reate wrongstates or ausalities. Note that for given O and W , if the mappingf from O to W exists, then it is neessarily unique. Thus, for eahstate s 2 SO, it makes sense to all VW (f(s)) the W -valuation of s.De�nition 6. Let O be an observation, and f�pgp2P be a P-indexfamily of formulae. W is a f�pgp2P-explanation for O i� W is anexplanation for O and W j= f�pgp2P .Now we an de�ne the diagnosis problem assoiated with LPOC.De�nition 7. Let P be a set of proesses, Aob and Aex be two setsof atomi propositions as before. The LPOC-diagnosis problem isde�ned as follows: given an observation O = (SO; �O;�O; VO) and aP-indexed family of formulae f�pgp2P over (P;Aob ;Aex), determinewhether there exists a f�pgp2P-explanation for O.In what follows, we will often omit the subsript p 2 P. Theformulae f�pg speify some knowledge about exeutions of the sys-tem, for instane some faulty behaviors. The objetive of diagnosis isto �gure out whether there exists an explanation for what has beenobserved, and hene detet if the atual behavior of the whole sys-tem was faulty or not. In ase an explanation exists, we also want toobtain more detailed information about the possible truth values ofpropositions in Aex at eah observed state. We de�ne the (explanato-ry) summary of O under f�pgp2P as the mapping g : SO ! 2Aex suhthat for every s 2 SO, g(s) � Aex , and a 2 g(s) i� there exists anexplanationW for O withW j= f�pgp2P and a is in the W -valuationof s. Thus, when the answer to the diagnosis problem is positive, wewant further to ompute the summary of O. Unfortunately, in thegeneral ase, the LPOC-diagnosis problem is undeidable (and so isthe omputation of summaries).Theorem 8. The LPOC-diagnosis problem is undeidable.Proof sketh: By a redution from the Post Correspondene Prob-lem (PCP), similar to that used in deision problems related to mes-sage sequene harts [9℄. The omplete proof of this theorem an befound in the extended version.



12 Perspetives in Conurreny4 Diagnosis with K-Inuening ExplanationsWe have shown in previous setion (Theorem 1) that the diagnosisproblem is undeidable in general. There are two usual ways to over-ome this problem. The �rst one is to onsider a deidable fragmentof the logi. Note however, that enoding a PCP beomes possibleas soon as there is a way to desribe sequenes of properties loatedon a given proess, and to de�ne a mapping of states on di�erentproesses that respets the ordering. This is why in most ases verysmall fragment of partial order logis beome undeidable when norestrition is imposed on the kind of model onsidered. Then, thequestion that naturally arises is whether we an identify a sublassof omputations for whih LPOC diagnosis is tratable. For this, weidentify the sublass of K-inuening omputations, and show thatthe LPOC diagnosis problem (and thus omputing the summary) isdeidable within this lass.De�nition 9. Let P be a set of proesses, Aob be a set of observableatomi propositions, Aex be a set of atomi explanatory propositions.Let W = (S; �;�; V ) be a omputation, and p; q 2 P with p 6= q. Theausal degree of p towards q in W is the maximum integer n 2 N forwhih there exist s1, s2, : : :, sn in Sp, and s01, s02, : : :, s0n in Sq suhthat:(i) s1 < s2 < : : : < sn and s01 < s2 < : : : < s0n.(ii) for i = 1; 2; : : : ; n, si � s0i, that is, si is a predeessor of s0i.(iii) s01 � sn.For K 2 N, W is K-inuening i� for any pair of proesses p; qin P with p 6= q, the ausal degree of p towards q is at most K.Intuitively, the ausal degree of p towards q is the maximal num-ber of events that preede some event on q that p an exeute withouthaving to wait for q. The general shape of K�inuening omputa-tions is illustrated in Figure 5. We now state the main result of thissetion.Theorem 10. Given an observation O, a P-indexed family f�pgp2Pof LPOC formulae, and an integer K 2 N, one an e�etively deter-mine whether there exists a K�inuening omputation W whih isa f�pgp2P-explanation for O.An important onsequene of the above theorem is that one ane�etively ompute a summary of the K-inuening explanations ofO. Let O be an observation and f�pgp2P a P-indexed family of



Logi-Based Diagnosis for Distributed Systems 13P Q Rs1 s01 r1n � K
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sn s0nFigure 5: K�inuening omputationsformulae. We an slightly adapt the de�nition of summaries in se-tion 3 to K-inuening omputations: the K-summary of O underf�pgp2P is the mapping g : SO ! 2Aex suh that for every s in SO,g(s) � Aex , and a 2 g(s) i� there exists a K-inuening explanationW for O with W j= f�pgp2P and a is in the W -valuation of s.Corollary 11. Given an observation O, a P-indexed family f�pgp2Pof LPOC formulae, and an integer K 2 N, one an e�etively om-pute the K-summary of O under f�pgp2P .Through the rest of this setion, we prove Theorem 10 andCorollary 11. We �x the integer K, the observation O and the for-mulae f�pgp2P . Reall from setion 2 that we an easily onstruta single formula � suh that for any omputation W , W j= � i�W j= f�pgp2P . In what follows, we �x �. We will assume that theomputations used hereafter are nonempty. It will be lear from theproof that this involves no loss of generality. We let WK denote theset of K-inuening omputations.The proof for Theorem 10 onsists of two steps. Firstly, we showthatK-inuening omputations an be identi�ed with Mazurkiewiztraes [5℄ over a suitable trae alphabet (�; I). This way, we an i-dentify K-inuening omputations with equivalene lasses of �nitesequenes in �?. This enoding is in spirit the same as the of enod-ing of universally K-bounded message sequene harts with traes in[12℄. Seondly, we onstrut three �nite state automata AutK , Aut�,AutO, running over linearizations of traes of (�; I). AutK heks ifan input sequene represents a omputation ofWK . For a sequene �representing a omputation W� in WK , Aut� aepts � i� W� j= �,and AutO aepts � i� W� is an explanation for O. The rux is theonstrution of Aut�. We shall give Aut� in the form of a two-way



14 Perspetives in Conurrenyalternating automaton, whih an be transformed to a �nite stateautomaton. The basi idea is similar to [7℄ and the usual transla-tion from LTL to alternating automata [18℄. The new tehnialityin our onstrution is in heking onformane with formulae of theform #m;A(T ), "m;A(T ). Then, there exists a sequene in �? aept-ed by AutK , AutO, Aut� i� WK ontains a omputation W suhthat W j= � and W is an explanation for O. This then establishesTheorem 10. For Corollary 11, we will show that for any state s ofO and any atomi proposition a 2 Aex , one an �nd a �nite stateautomaton Auts;a whih has the following property: if a sequene �represents a omputation W� in WK suh that W� j= �, and W� isan explanation of O, Auts;a aepts � i� a is in the W�-valuation ofO. As a result, one an then e�etively ompute the K-summary ofO under f�pgp2P .Enoding K-inuening omputations with TraesWe reall that a Mazurkiewiz trae [5℄ alphabet is a pair (�; I)where � is a �nite alphabet, and I � � � � is an irreexive andsymmetri relation alled the independene relation. The dependenerelation D is given by (� � �) n I. A (�nite) �-labelled poset is apair (E;v; �), where E is a �nite set, v � E � E a partial order,and � : E ! � a labeling funtion. As usual, we write e < e0 ifeve0 and e 6= e0. We let b< � E � E denote the least relation whosereexive and transitive losure is equal to v. A (Mazurkiewiz) traeover (�; I) is a �-labelled poset tr = (E;v; �) satisfying: (i) for anye; e0 2 E, �(e)D�(e0) implies eve0 or e0ve; (ii) for any e; e0 2 E, eb<e0implies �(e)D�(e0). We de�ne isomorphism of traes in the obviousway and write tr = tr 0 if the traes tr ; tr 0 are isomorphi.Let [K℄ = f0; 1; : : : ;K � 1g. We de�ne the alphabets �pre =fpre(p; i) j p 2 P; i 2 [K℄g, and �su = fsu(p; i) j p 2 P; i 2 [K℄g.Let � = P�2�pre�2�su�2A. We de�ne � as the subset of � satisfying:�p; fpre(p1; i1); : : : ; pre(pg; ig)g; fsu(p01; i01); : : : ; su(p0h; i0h)g; A� 2 �i� p1; : : : ; pg are distint members of P n fpg, and p01; : : : ; p0h are dis-tint members of P n fpg. We now de�ne the dependene relationD � � � � as: (p;PRE ;SUC ; A) D (p0;PRE 0;SUC 0; A0) i� one ofthe following onditions holds:� p = p0.� p 6= p0, and for some i 2 [K℄, pre(p0; i) 2 PRE and su(p; i) 2SUC 0.� p 6= p0, and for some i 2 [K℄, su(p0; i) 2 SUC and pre(p; i) 2PRE 0.



Logi-Based Diagnosis for Distributed Systems 15We set the independene relation I = � � � � D. It is trivial toverify that (�; I) is a trae alphabet. From now on, we �x the traealphabet (�; I).Let W = (S; �;�; V ) be a K-inuening omputation. Let usde�ne the �-labeling of W , denoted ��W (or simply �W ), as the fol-lowing funtion from S to �: for s 2 S, �W (s) = (p;PRE ;SUC ; A)where:� p = �(s).� pre(q; i) 2 �pre is in PRE i� s has predeessor s0 with �(s0) = q(suh a s0 is neessarily unique by the de�nition of predeessor)and i = j mod K where j is the number of states s00 in Spsatisfying s00 < s and that s00 has a predeessor of loation q.� Further, su(q̂; î) 2 �su is in SUC i� s has a suessor ŝ0 with�(ŝ0) = q̂ (suh a ŝ0 is also unique) and î = ĵ mod K where ĵis the number of states ŝ00 in Sp satisfying s00 < s and that s00has a suessor of loation q.� A = V (s).Note that PRE and SUC are not neessarily singletons, as astate may have one suessor (reps. predeessor) on eah proess. Letus de�ne tr(W ) = (S;�; �W ). Remark that for W 2 WK , tr (W ) is atrae over (�; I). Furthermore, ifW 0 is aK-inuening omputation,then W =W 0 i� tr (W ) = tr(W 0). Figure 6 below shows an exampleof a 2-inuening omputation with the assoiated labeling. For thesake of larity, the subsets of atomi propositions that are true ateah state are not expliitly given, but only desribed by A1; : : : A9.
(q; fpre(p; 0)g; ;; A5)(q; ;; fsu(p; 0); su(r; 0)g; A4)
(q; ;; fsu(r; 1)g; A6)(q; fpre(p; 1); pre(r; 0g; ;; A7)

(p; ;; fsu(q; 1)g; A2)
(p; fpre(q; 0)g; ;; A3)

(r; fpre(q; 0)g; fsu(q; 0)g; A8)(p; ;; fsu(q; 0)g; A1)p q r

(r; fpre(q; 1)g; ;; A9)Figure 6: A 2-inuening omputation and its �-labelingA linearization of a trae (E;v; �) is a sequene �(e1) : : : �(en)where e1; : : : ; en are distint members of E, E = fe1; : : : ; eng, and



16 Perspetives in Conurrenyfor any i; j 2 f1; : : : ; ng, eivej implies i � j. For any omputationW 2 WK , by a �-linearization of W , we refer to a linearization oftr(W ). We denote by Lin�(W ) the set of �-linearizations of W .Let Lin�K = SW2WK Lin�(W ). Note that omputations in WK anbe uniquely onstruted from sequenes in Lin�K . For a non-nullsequene � in �?, let last(�) denote the last letter of �. For �; �0 in�?, we write � 4 �0 i� � is a pre�x of �0. We de�ne the partial orderv�? � �? � �? via: �v�?�0 i� �; �0 are non-null, � 4 �0 and thereexist �1; �2; : : : ; �h, h � j�j, suh that � 4 �1 4 �2 : : : 4 �h 4 �0 andlast(�)Dlast (�1)Dlast(�2) : : : last(�h)Dlast(�0). For every � 2 Lin�K ,we de�ne the omputation po(�) = (S�; �� ;��; V�), where:� S� is the set of non-empty pre�xes of �.� For � 2 S�, ��(�) = p i� last(�) = (p;PRE ;SUC ; A) for somePRE ;SUC ; A.� �� is the restrition of v�? to S�.� For � 2 S�, V�(�) = A i� last(�) = (p;PRE ;SUC ; A) for somep;PRE ;SUC .It is easy to verify that po(�) is well-de�ned. Furthermore, for every� 2 Lin�K and W = po(�), we have W 2 WK and � 2 Lin�(W ).Automata onstrution.We an build three �nite state automata AutK , AutO, Aut�whih have the following properties:� For � 2 �?, � is aepted by AutK i� � 2 Lin�K .� � 2 Lin�K is aepted by AutO i� po(�) is a K-inueningexplanation for O.� � 2 Lin�K is aepted by Aut� i� po(�) satis�es �.It follows that a sequene � 2 �? is aepted by the produt ofAutK , AutO, Aut� i� po(�) is a K-inuening f�pg-explanation forO. We do not detail the onstrution of AutK and AutO, that anbe found in the extended version of this paper [19℄.Proposition 12. Let P be a set of proesses, A be a set of atomiproposition, K be an integer, and � be Mazurkiewiz trae alphabetomputed from P, A and K. Then, there exists an automaton AutKof size O(j�jK�jPj2) that reognizes linearizations of K-inueningomputations over P with valuations in A.We an reuse the onstrution of AutK to build AutO, the au-tomaton that reognizes K-inuening explanations of O. At eah



Logi-Based Diagnosis for Distributed Systems 17state of this automaton, one must reall a state of AutK reahed(ie, the urrent K�inuening linearization explored), the part of Othat is embedded in this explanation, and some additional informa-tion about the ausalities that may appear in the future.Proposition 13. Let O be an observation over a set of proessesP, with valuations in an alphabet Aob. Let K be an integer andA � Aob be a set of atomi propositions. The size of AutO is at mostin O(jAutK j � 2jOj � 2jPj � (jOj � jPj)2 � (jPj �K + 1)K).Constrution of Aut�.We next give the desription of Alt�, a two-way alternating au-tomaton [13℄ that reognizes linearizations of K�inuening ompu-tations satisfying �. This automaton an then be transformed intoa standard �nite state automaton Aut�.We introdue some new atomi formulae in order to simplify thestruture of �. Reall that for a omputation W and a state s of W ,the m-view or the m-frontier of s ontains at most Nm = Pmi=0 jPjistates. We introdue formulae of the form # m(T ); " m(T ), wherem 2 N and T is a omputation ontaining at most Nm states. LetW = (S; �;�; V ) be a omputation and s 2 S. Then W; s j=#m(T )i� the m-view of s is isomorphi to T . The semantis of "m(T ) isgiven similarly. We note that a formula #m;A(T ) is equivalent to_T 02T #m(T 0), where T is the olletion of omputation T 0 suh thatT 0 ontains at most Nm states and the projetion of T 0 onto A isisomorphi to T . Similarly, we an write "m;A(T ) as a disjuntion offormulae "m(T ) with an analogous semantis.Let W = (S; �;�; V ) be a omputation and s 2 S. Let s0 2 Sand � = a1a2 : : : an be a non-null sequene in �?. If there exists1; : : : ; sn 2 S suh that s0 = sn, sn � sn�1 � : : : s1 � s and�W (si) = ai for i = 1; : : : ; n, then we say s0 is a � -anestor of s.Reall that eah state in W has at most jPj predeessors, one be-longing to eah Sp. Thus, we an in fat say s0 is the � -anestor of s.We introdue formulae of the form #(�; � 0) where � , � 0 are non-nullsequenes in �?. We de�ne W; s j=#(�; � 0) i� there exist states ŝ; ŝ0suh that ŝ is the � -anestor of s, ŝ0 is the � 0-anestor of s, and ŝ � ŝ0.We argue that a formula #m(T ) an be equivalently written as aboolean ombination of formulae of the form #(�; � 0). Assume with-out loss of generality of T ontains a maximum state smax . Thus,every state in T is the � -anestor of smax for some � of length atmost the number of states of T . Hene, #m(T ) is equivalent to as-serting for eah pair of states s; s0 in T , whether #(�; � 0), #(� 0; �), or



18 Perspetives in Conurreny: #(�; � 0) ^ : #(� 0; �), where s; s0 are the respetively the � -anestorand � 0-anestor of smax .Analogously, we de�ne � -desendants and introdue formulaeof the form " (�; � 0) where �; � 0 are non-null sequenes in �?. Itfollows that a formula "m(T ) is equivalent to a boolean ombinationof formulae of the form "(�; � 0).With the new formulae introdued above, we an assume with-out loss of generality that � is formed from :;^;_ and the atomiformulae lop, #(�; � 0), "(�; � 0), EX', EU(';'0). Furthermore, nega-tions in � only apply to atomi formulae.Now we are ready to desribe the two-way alternating automatonAlt�. The basi elements of Alt� are similar as in usual translationsof temporal logis to alternating automata (see e.g. [18℄). The maindiÆulty is to deal with atomi formulae of the form # (�; � 0), " (�; � 0).We informally reall some basis of two-way alternating automa-ta and refer to [4, 13℄ for details. Let Alt be a two-way alternatingautomaton. An input word is delimited on the left by a left markerand on the right by a right marker. Initially, Alt is at the initialstate with the head at the �rst letter of the input word. Upon read-ing the letter of the urrent head position, Alt an spawn severalopies where eah opy an move the head left or right and go to anew ontrol state. Whih ombination of opies an be spawned arepre-determined by a transition relation. A run of Alt over an inputword � is a (�nite) tree, where eah branh terminates upon reahingthe left or the right marker. And Alt aepts � i� there exists a runover � suh that every leaf ontains an aepting state.For larity, we desribe only informally the operations of Alt�.The exat onstrution of Alt� an be found in the extended version.For illustration purpose, we �x an input word � = a1a2 : : : an inLin�K . We write �; i j= ' i� po(�); a1 : : : ai j= '.Let SF (�) be the set of subformulae of � and their negations,where ::' is identi�ed with '. A state z of Alt� onsists of aformula ' in SF (�) and some alphabeti onstraints. Suh a state zmust verify that ' holds at the urrent head position i and that thealphabeti onstraints should be satis�ed subsequently.Note that po(�) j= � i� �; h j= � where a1a2 : : : ah is a minimalstate in po(�). Thus, at the initial state, Alt� searhes for positionh suh that aj I ah for j = 1; : : : ; h� 1, and upon reahing positionh, it veri�es that � holds at h.It now suÆes to explain how Alt� veri�es that a formula inSF (�) holds at the urrent head position. We proeed indutivelyfrom the atomi formulae of forms lop, # (�; � 0), " (�; � 0) and theirnegations, then to formulae of forms EX', EU(';'0), and their nega-



Logi-Based Diagnosis for Distributed Systems 19tions. We then study onjuntion and disjuntion of formulae.Firstly, Alt� an easily hek if lop or :lop holds at the urrenthead position, simply from the letter at the head position. Nextwe onsider atomi formulae of the form #(�; � 0), "(�; � 0) and theirnegations. For the input sequene �, we let ai = (pi;PRE i;SUC i; Ai)for eah i. Reall that po(�) = (S�; ��;��; V�) where S� is the setof pre�xes of �. For s; s0 2 S�, we write s�� s0 i� s is a predeessorof s0 in po(�). Consider g; h 2 f1; 2; : : : ; ng, it is easy to see thata1 : : : ag �� a1 : : : ah i� g < h and one of the following onditionsholds:� pg = ph. And for eah index i with g < i < h, pi 6= pg.� pg 6= ph and ag D ah. Further, there do not exist indiesi1; i2; : : : ; it, t � j�j, suh that g < i1 < i2 < : : : < it < h, andag D ai1 D ai2 : : : ait D ah.For a formula # (�; � 0), where � = b1b2 : : : bm, � 0 = b01b02 : : : b0m0 , wenote that �; ` j=#(�; � 0) i� there exist indies `1; : : : ; `m, `01; : : : ; `0m0 ,in f`+ 1; `+ 2; : : : ; ng suh that:� a1a2 : : : a` �� �1 �� �2 �� : : : �� �m, where �i = a1a2 : : : a`ifor i = 1; 2; : : : ;m. And a`i = bi for i = 1; 2; : : : ;m. Thisasserts that the � -anestor of a1a2 : : : al exists.� a1a2 : : : a` �� �01 �� �02 �� : : : �� �0m0 , where �0i = a1a2 : : : a`0ifor i = 1; 2; : : : ;m0. And a`0i = b0i for i = 1; 2; : : : ;m0. Thisasserts that the � 0-anestor of a1a2 : : : al exists.� a1a2 : : : a`m �� a1a2 : : : a`0m0 , that is, a1a2 : : : a`mv�?a1a2 : : : a`0m0 .This asserts that the � -anestor of a1a2 : : : al ausally preedesthe � 0-anestor of a1a2 : : : al.Thus, to verify that a formula # (�; � 0) or its negation holds at the ur-rent position, Alt� moves to the left until it hits the left end markerand along the way heks the existene of indies `1; : : : ; `m; `01; : : : ; `0m0satisfying the above onditions. Analogously, it is lear how Alt� anverify if a formula "(�; � 0) or its negation holds at the urrent headposition.Finally, we note that formulae of forms EX', EU(';'0) and theirnegation an be handled as in usual translations of temporal logisover traes to alternating automata (e.g. [7℄). This is also the asefor onjuntion and disjuntion of formulae. This ompletes the de-sription of Alt�.It is not diÆult to see that the number of states of Alt� isof omplexity O(2j�j � j�jj�j�m), where m is the maximum length of



20 Perspetives in Conurreny�; � 0 for all atomi formulae of the form "(�; � 0), #(�; � 0). It followsfrom [13℄ that Alt� an be transformed to a �nite state automa-ton Aut� with 2N�2N states where N is the number of states of Alt�.Cheking for the existene of an explanation then onsists in hekingthe emptiness of the intersetion of Aut� and AutO built in proposi-tion 13. The proof of Theorem 10 is now ompleted. �Proof of orollary 11: To prove Corollary 11, we �rst reall thatif W is an explanation for O, then the injetive mapping from thestates of O to the states ofW ditated in the de�nition of explanationis unique. Thus, it is easy to see that for any state s of O andany atomi proposition a 2 Aex , one an onstrut a �nite stateautomaton Auts;a whih has the following property: if � a sequene� representing a omputation W� in WK where W� j= � and W� isan explanation of O, Auts;a aepts � i� a is in the W�-valuationof s. Auts;a an then be easily onstruted from AutO by requiringthat transitions that add s to the subset of observed states of O arelabelled by letters with valuations that ontain a. As a result, onean then e�etively ompute the K-summary of O under f�pgp2P ,by testing for eah state s of O, eah a in Aex , the non-emptiness ofthe produt of Aut� and Auts;a. �If the formula � is suh that all frontiers and views used areat most m-frontiers or m-views, then one an determine whetherthere exists a K-inuening explanation W for an observation Owith omplexity O(W1:2W2:2W2 ), where:W1 = j�jK:jPj2 � 2jOj � 2jPj � (jOj � jPj)2 � (jPj �K + 1)KW2 = 2�j�j�N 2m�2Aex �PNmi=0 f(i)� � j�jj�j�mwith f(i) = i � 2 i24 + 3i2 +ln(i), and Nm = 1�jPjm+11�jPj . From the de�ni-tion of summaries, omputing a summary for O an then be done inO(jOj � jAexj �W1 � 2W2�2W2 ). The proof of these omplexity results isnot provided here, but an be found in the extended version of thispaper [19℄.5 Related Work and ConlusionWe have proposed a diagnosis framework based on a new partial orderlogi (LPOC) over partial orders (i.e. the truth of formulae is evalu-ated at loal states). Unsuprisingly, satis�ability of LPOC formulae,and hene diagnosis are not deidable without restrition. To keepdeidability of diagnosis, a restrition alled K-inuene is imposedon the models. As LPOC uses the existential until operator, for agiven K, LPOC restrited to K-inuening omputations is not de-



Logi-Based Diagnosis for Distributed Systems 21�nable in the �rst order logi over the Mazurkiewiz traes enodingK-inuening omputations. However, it an be easily translated toMSO formulae. An interesting work would be to look for a fragmentthat is expressively omplete for the �rst order logi over the traesenoding K-inuening omputations.Even with the restrition to K-inuening omputations, diag-nosis is very expensive (several exponential in the size of the formulaand exponential in the size of the observed behavior). This high om-plexity ould mean that diagnosis with LPOC is unfeasible. Notehowever that this omplexity is in the worst ases. For instane,the exponential in the size of the observation omes from the max-imal number of on�gurations in a partial order. In pratie, foran observation with a bounded number of proesses, the number ofon�gurations an be muh slower. The other ostly part of the diag-nosis problem omes from the translation from alternating automatato �nite state automata. Again this is a worst ase omplexity. Notealso that the translation of LPOC formulae into onjuntion of for-mulae of the form " (�; � 0), # (�; � 0) is ostly only when the patternonsidered in the formulae are large. In general, basi patterns usedin partial order languages suh as message sequene harts are rathersmall, and we argue that this should also be the ase with LPOC for-mulae. Some omplexity gains an hene be expeted by restritingthe size and the number of partial order templates onsidered, butalso the modalities of the formulae. Note however that most of themodalities hosen for LPOC seem important. The simple example ofsetion 2 shows that the Until operator is essential to express proper-ties of the form \when T1 ours, T2 will our later". One may alsotry to restrit the use of negation, that is LPOC formulae would onlybe onjuntions of positive assertions on the ourrene of patterns.Note however that the translation of an LPOC formula to a simpli�edformula on ausal hains uses negation when two states of a patternare not ausally related. Hene, even in a restrited setting, negationof some properties will have to be heked. So, the small omplexitygain that ould our may not justify the loss of expressiveness dueto a restrition on negations.In [16℄, D.Peled shows that model heking TLC� formulae onHigh-level Message Sequene harts (HMSCs) is deidable. TLC� is asubset of TLC that only ontains next and until temporal operators,and desribes the shape of ausal hains in all the partial ordersgenerated by a HMSC. TLC� is learly less expressive than LPOC.The Propositional Dynami Logi (PDL) for message passingsystems proposed by [3℄, extends dynami LTL for traes [11℄. Modelheking PDL properties over HMSCs is PSPACE omplete. [15℄



22 Perspetives in Conurrenyproposes a loal logi LD0 and several extensions over omputations,with future and past modalities, and show that in the general ase,satis�ability is undeidable. However, these logis beome deidablewhen onsidering models of bounded size, or when omputations anbe organized as suessive layers of �nite message exhanges. LD0only desribes hains of ausally related events ourring in the futureor in the past of a loal state, while the template mathing in LPOCallows to desribe a omplete partial order in a bounded future or pastof a loal state. LPOC is then more disriminating than LD0, and ifwe restrit our models to Message Sequene Charts (a partial orderwhere loality of events and messages are expliitly represented), itis also more expressive and disriminating than TLC� and PDL.Note also that for TLC�, PDL, or LD0, partial orders are seenas models of formulae, but not as elements of the logi itself. Thelosest approah mixing logi and partial orders is alled "TemplateMessage Sequene Charts" [9℄. A template MSC is an MSC thatomports some \hole" and inomplete messages. Roughly speaking,models for a template MSC are obtained by �lling the holes with newpartial orders, and mathing sendings and reeptions of messages.The authors inrease the power of template MSCs with pre/post on-dition operators. The models of these formulae are MSCs. This logiis very expressive, but satis�ability is undeidable when no bound isassumed on the set of models onsidered. However, a restrited frag-ment of the logi is proposed to model hek existentially boundedCommuniating Finite State Mahines. Note however that models fortemplate MSC formulae are MSCs, while models for LPOC formulaeare arbitrary omputations. Even if we only onsider LPOC formulaeover MSCs, LPOC and template MSCs remain unomparable. Onone hand, holes in template MSCs are not neessarily desriptionsof what happens in the future or in the past of an event. By �llinghole, one may add onurrent events, i.e. it is possible to say withtemplate MSCs that whenever an ation a ours on proess p, aonurrent ation b ours on proess q. Clearly, this kind of formulaan not be expressed with LPOC. On the other hand, some LPOCformulae that use the until operator do not �nd their equivalent intemplate MSC.Note also that the works in [16℄,[3℄ and [9℄ rely on the existential-ly bounded nature of models to ensure deidability of model heking(that is, there is a bound b suh that every MSC onsidered possessa linearization where the size of ommuniation hannel never ex-eeds b). This is not suÆient in our ase to obtain deidability ofdiagnosis, as the PCP enoding of setion 3 is existentially bounded.TheK-inuening restrition is then loser to the universal bound on
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